Tropischer Pflanzenbau und Agrosystem Modellierung




Umweltveränderungen stellen landwirtschaftliche Systeme vor große Herausforderungen, denen diese in Zukunft immer stärker ausgesetzt sein werden: Wasserknappheit, Bodennährstoffverarmung, Bodenerosion, häufigere Extremwetterereignisse, erhöhte Ozonkonzentrationen und, nicht zuletzt, der Klimawandel. Unser Ziel ist es, durch Forschung und forschungsorientierte Lehre das Verständnis über die Funktionsweise wichtiger tropischer Anbausysteme zur Pflanzenproduktion in einer sich verändernden Umwelt zu vertiefen. Schließlich erforschen wir quantitativ und in Zusammenarbeit mit anderen Fachdisziplinen verschiedene Aspekte der Ernährungssicherung auf unterschiedlichen Skalenebenen.


TROPAGSTemple1 Grafik herunterladen


Schlüsselpublikationen:

Hoffmann, M.P., et al. (2016). Assessing the Potential for Zone-Specific Management of Cereals in Low-Rainfall South-Eastern Australia: Combining On-Farm Results and Simulation Analysis Journal of Agronomy and Crop Science 203, 14–28.
DOI:10.1111/jac.12159

Kassie, B.T., Van Ittersum, M.K., Hengsdijk, H., Asseng, S., Wolf, J. & Rötter, R.P. (2014). Climate-induced yield variability and yield gaps of maize (Zea mays L.) in the Central Rift Valley of Ethiopia Field Crops Research 160, 41-53.
DOI:10.1016/j.fcr.2014.02.010
Bracho-Mujica, G., et al. (2024). Effects of Changes in Climatic Means and Variability on Future Wheat and Maize Yields and the Role of Adaptive Agro-Technologies in Reducing Negative Impacts. Agricultural and Forest Meteorology Volume 346,2024,109887.
https://doi.org/10.1016/j.agrformet.2024.109887

Appiah, M., et al. (2023). Projected impacts of sowing date and cultivar choice on the timing of heat and drought stress in spring barley grown along a European transect.Field Crops Research 291, 108768.
DOI: 10.1016/j.fcr.2022.108768

Asseng, S., et al. (2015). Rising temperatures reduce global wheat production Nature Climate Change 5, 143-147.
DOI:10.1038/nclimate2470

Hoffmann, M.P., et al. (2018). Exploring adaptations of groundnut cropping to prevailing climate variability and extremes in Limpopo Province, South Africa Field Crops Research 219, 1-13.
DOI: 10.1016/j.fcr.2018.01.019

Rötter, R.P., et al. (2018). Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes - A review Field Crops Research 221, 142–156.
DOI: 10.1016/j.fcr.2018.02.023

Kahiluoto, H., et al. (2014). Cultivating resilience by empirically revealing response diversity Global Environmental Change 25, 186-193.
DOI:10.1016/j.gloenvcha.2014.02.002

Rötter, R.P., et al. (2015). Use of crop simulation modelling to aid ideotype design of future cereal cultivars Journal of Experimental Botany 66, 3463-3476.
DOI:10.1093/jxb/erv098

Rötter, R.P., Tao, F., Höhn, J.G., Palosuo, T. (2015) Use of crop simulation modelling to aid ideotype design of future cereal cultivars Journal of Experimental Botany 66 (12), 3463-3476
DOI: 10.1093/jxb/erv098erv098

Tao, F., Rötter, R.P., Palosuo, T., et al. (2016) Designing future barley ideotypes using a crop model ensemble European Journal of Agronomy 82(A), 144-162
DOI: 10.1016/j.eja.2016.10.012
Liu, K. et al., (2023).Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat Commun 14, 765 DOI: 10.1038/s41467-023-36129-4

de Wit, A., et al. (2015). WOFOST developer's response to article by Stella et al. Environmental Modelling & Software 59, 44-58.
DOI:10.1016/j.envsoft.2015.07.005

Hoffmann, M.P., et al. (2014). Simulating potential growth and yield in oil palm with PALMSIM: Model description, evaluation and application Agricultural Systems 131, 1-10.
DOI:10.1016/j.agsy.2014.07.006

Rötter, R.P., et al. (2011). Crop–climate models need an overhaul Nature Climate Change 1, 175-177.
DOI:10.1038/nclimate1152

Rötter, R.P., et al. (2014). Robust uncertainty Nature Climate Change 4, 251-252.
DOI:10.1038/nclimate2181

Wallach, D., et al. (2016). Estimating model prediction error: Should you treat predictions as fixed or random? Environmental Modelling & Software 84, 529-539.
DOI:10.1016/j.envsoft.2016.07.010

Ewert, F., et al. (2015). Crop modelling for integrated assessment of risk to food production from climate change Environmental Modelling & Software 72, 287-303.
DOI:10.1016/j.envsoft.2014.12.003

Liu, X., et al. (2016). Dynamic economic modelling of crop rotations with farm management practices under future pest pressure Agricultural Systems 144, 65-76.
DOI:10.1016/j.agsy.2015.12.003