2024
Prediction error drives associative learning and conditioned behavior in a spiking model of Drosophila larva.
Jürgensen A.M, Sakagiannis P., Schleyer M., Gerber B., Nawrot M.
Compromising tyrosine hydroxylase function establishes a delusion-like temporal profile of reinforcement by dopamine neurons in Drosophila.
Amin F, König C, Zhang J, Kalinichenko LS, Königsmann S, Brunsberg V, Tiemensperger TD, Müller CP, Gerber B.
bioRxiv 2024.06.27.600982. https://doi.org/10.1101/2024.06.27.600982
Minimal circuit motifs for second-order conditioning in the insect mushroom body.
Jürgensen A.M, Schmitt FJ, Nawrot M.
https://doi.org/10.3389/fphys.2023.1326307What do the mushroom bodies do for the insect brain? Twenty-five years of progress.
Fiala A, Kaun KR.
Learning & Memory 31:a05387, 2024, https://doi.org/10.1101/lm.053827.12
An integrative sensor of body states: how the mushroom body modulates behavior depending on physiological context.
Suárez-Grimalt R, Grunwald Kadow IC, Scheunemann L.
Skewing information flow through pre- and postsynaptic plasticity in the mushroom bodies of Drosophila.
Pribbenow C, Owald D.
Presynaptic regulators in memory formation.
Turrel O, Gao L, Sigrist SJ.
Learning & Memory 31:a054013, 2024, https://doi.org/10.1101/lm.054013.124
The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila. c
Coban
B, Poppinga H, Rachad EY, Geurten B, Rodriguez Jiminez FJ, Gadgil Y,
Alyagor I, Schuldiner O, Grunwald Kadow IC, Riemensperger TD, Widmann
AK, Fiala A.
Cognitive
limits of larval Drosophila: testing for conditioned inhibition, sensory
preconditioning, and second-order conditioning.
Sen E, El-Keredy A, Jacob N, Mancini N, Asnaz G, Widmann A, Gerber B, Thoener J.
2023
Minimal circuit motifs for second-order conditioning in the insect mushroom body.
Jürgensen A.M, Schmitt FJ, Nawrot M.
An antagonism between Spinophilin and Syd-1 operates upstream of memory-promoting presynaptic long-term plasticity.
Ramesh N, Escher M, Turrel O, Lützkendorf J, Matkovic T, Liu F, Sigrist SJ.
The mushroom body output encodes behavioral decisons during sensory-motor transformation.
Arican C, Schmitd FJ, Rössler W, Strube-Bloss MF, Nawrot M.
Neuronal excitability as a regulator of circuit remodeling.
Mayseless O, Shapira G, Rachad EY, Fiala A, Schuldiner O.
Current Biology 33:981-989.e3, 2023, https://doi.org/10.1016/j.cub.2023.01.032
High-resolution analysis of individual Drosophila melanogaster larvae uncovers individual variability in locomotion and its neurogenetic modulation.
Thane M, Paisios E, Stöter T, Krüger A-R, Gläß S, Dahse A-K, Scholz N, Gerber B, Lehmann DJ, Schleyer M.
Open Biology 13:220308, 2023, https://doi.org/10.1098/rsob.2203082022
Visualization of learning-induced synaptic plasticity in
output neurons of the Drosophila mushroom body γ-lobe.
Hancock CE, Rostami V, Rachad EY, Deimel SH, Nawrot MP,
Fiala A.
Scientific Reports 12:10421, 2022, https://doi.org/10.1038/s41598-022-14413-5
(M)Unc13s in Active Zone Diversity: A Drosophila
Perspective.
Piao C, Sigrist SJ.
Frontiers in Synaptic Neuroscience 13, 2022, https://doi.org/10.3389/fnsyn.2021.798204
Pruning deficits of the developing Drosophila mushroom
body result in mild impairment in associative odour learning and cause
hyperactivity.
Poppinga H, Çoban B, Meltzer H, Mayseless O, Widmann A,
Schuldiner O, Fiala A.
Open Biology 12:220096, 2022, https://doi.org/10.1098/rsob.220096
Age-related decrease in appetitive associative memory in
fruit flies.
König C, Gerber
B.
BioRxiv 2022.08.23.504945, 2022, https://doi.org/10.1101/2022.08.23.504945
Optogenetically induced reward and “frustration” memory
in larval Drosophila melanogaster.
Thoener J,
Weiglein A, Gerber B, Schleyer M.
The Journal of Experimental Biology 225:jeb244565, 2022, https://doi.org/10.1242/jeb.244565
Transient active zone remodeling in the Drosophila
mushroom body supports memory.
Turrel O, Ramesh N, Escher MJF, Pooryasin A, Sigrist SJ.
Current Biology S0960-9822(22)01625-6, 2022, https://doi.org/10.1016/j.cub.2022.10.017
A brain-wide form of presynaptic active zone plasticity
orchestrates resilience to brain aging in Drosophila.
Huang S, Piao C, Beuschel CB, Zhao Z, Sigrist SJ.
PLoS Biol 20:e3001730, 2022, https://doi.org/10.1371/journal.pbio.3001730
Postsynaptic plasticity of cholinergic synapses underlies
the induction and expression of appetitive and familiarity memories in
Drosophila.
Pribbenow C, Chen Y-C, Heim M-M, Laber D, Reubold S,
Reynolds E, Balles I, Fernández-D V Alquicira T, Suárez-Grimalt R, Scheunemann
L, Rauch C, Matkovic T, Rösner J, Lichtner G, Jagannathan SR, Owald D.
Elife 11:e80445,
2022, https://doi.org/10.7554/eLife.80445
The mushroom body output encodes behavioral decision
during sensory-motor transformation.
Arican C, Schmitt J, Rössler W, Strube-Bloss MF, Nawrot, MP.
bioRxiv 2022-09, 2022, https://doi.org/10.1101/2022.09.14.507924
Prediction error drives associative olfactory learning
and conditioned behavior in a spiking model of Drosophila larva.
Juergensen AM,
Sakagiannis P, Schleyer M, Gerber B, Nawrot MP.
bioRxiv 2022-12,
2022, https://doi.org/10.1101/2022.12.21.521372
2021
Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation.
Baltruschat L, Prisco L, Ranft P, Lauritzen JS, Fiala A, Bock DD, Tavosanis G.
Cell Reports 34:108871, 2021, https://doi.org/10.1016/j.celrep.2021.108871
Rapid Ca2+ channel accumulation contributes to cAMP-mediated increase in transmission at hippocampal mossy fiber synapses.
Fukaya R, Maglione M, Sigrist SJ, Sakaba T.
Proceedings of the National Academy of Sciences 118:e2016754118, 2021, https://doi.org/10.1073/pnas.2016754118
A neuromorphic model of olfactory processing and sparse coding in the Drosophila larva brain.
Jürgensen A-M, Khalili A, Chicca E, Indiveri G, Nawrot MP.
Neuromorphic Computing and Engineering 1:024008, 2021, https://doi.org/10.1088/2634-4386/ac3ba6
A quick and versatile protocol for the 3D visualization of transgene expression across the whole body of larval Drosophila.
Kobler O, Weiglein A, Hartung K, Chen Y, Gerber B, Thomas U.
Journal of Neurogenetics 35:306–319, 2021, https://doi.org/10.1080/01677063.2021.1892096
Silencing neuronal activity is required for developmental circuit remodeling.
Mayseless O, Rachad EY, Shapira G, Fiala A, Schuldiner O.
bioRxiv 2021.10.31.466652, 2021, https://doi.org/10.1101/2021.10.31.466652
Unc13A and Unc13B contribute to the decoding of distinct sensory information in Drosophila.
Pooryasin A, Maglione M, Schubert M, Matkovic-Rachid T, Hasheminasab S, Pech U, Fiala A, Mielke T, Sigrist SJ.
Nature Communications 12:1932, 2021, https://doi.org/10.1038/s41467-021-22180-6
The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx.
Prisco L, Deimel SH, Yeliseyeva H, Fiala A, Tavosanis G.
eLife 10:e74172, 2021, https://doi.org/10.7554/eLife.74172
Antagonistic interactions between two Neuroligins coordinate pre- and postsynaptic assembly.
Ramesh N, Escher MJF, Mampell MM, Böhme MA, Götz TWB, Goel P, Matkovic T, Petzoldt AG, Dickman D, Sigrist SJ.
Current Biology 31:1711-1725.e5, 2021, https://doi.org/10.1016/j.cub.2021.01.093
A Mechanistic Model for Reward Prediction and Extinction Learning in the Fruit Fly.
Springer M, Nawrot MP.
eNeuro 8, 2021, https://doi.org/10.1523/ENEURO.0549-20.2021
Associative learning in larval and adult Drosophila is impaired by the dopamine-synthesis inhibitor 3-Iodo-L-tyrosine.
Thoener J, König C, Weiglein A, Toshima N, Mancini N, Amin F, Schleyer M.
Biology Open 10:bio058198, 2021, https://doi.org/10.1242/bio.058198
Aversive teaching signals from individual dopamine neurons in larval Drosophila show qualitative differences in their temporal “fingerprint.”
Weiglein A, Thoener J, Feldbruegge I, Warzog L, Mancini N, Schleyer M, Gerber B.
Journal of Comparative Neurology 529:1553–1570, 2021, https://doi.org/10.1002/cne.25037
Preparing Adult Drosophila melanogaster for Whole Brain Imaging during Behavior and Stimuli Responses.
Woller A, Bandow P, Aimon S, Grunwald Kadow IC.
JoVE:61876, 2021, https://doi.org/10.3791/61876
2020
Studying complex brain dynamics using Drosophila.
Aimon S, Grunwald Kadow IC.
Journal of Neurogenetics 34:171–177, 2020, https://doi.org/10.1080/01677063.2019.1706092
Cockroaches Show Individuality in Learning and Memory During Classical and Operant Conditioning.
Arican C, Bulk J, Deisig N, Nawrot MP.
Frontiers in Physiology 10, 2020, https://doi.org/10.3389/fphys.2019.01539
Circuit and Cellular Mechanisms Facilitate the Transformation from Dense to Sparse Coding in the Insect Olfactory System.
Betkiewicz R, Lindner B, Nawrot MP.
eNeuro 7, 2020, https://doi.org/10.1523/ENEURO.0305-18.2020
Visualization of a Distributed Synaptic Memory Code in the Drosophila Brain.
Bilz F, Geurten BRH, Hancock CE, Widmann A, Fiala A.
Neuron 106:963-976.e4, 2020, https://doi.org/10.1016/j.neuron.2020.03.010
Recurrent architecture for adaptive regulation of learning in the insect brain.
Eschbach C, Fushiki A, Winding M, Schneider-Mizell CM, Shao M, Arruda R, Eichler K, Valdes-Aleman J, Ohyama T, Thum AS, Gerber B, Fetter RD, Truman JW, Litwin-Kumar A, Cardona A, Zlatic M.
Nature Neuroscience 23:544–555, 2020, https://doi.org/10.1038/s41593-020-0607-9
Visualization of naive and learned odor representations using in vivo calcium imaging and immunohistochemical bouton mapping of single Drosophila mushroom body neurons.
Hancock CE, Geurten BRH, Fiala A.
STAR Protocols 1:100210, 2020, https://doi.org/10.1016/j.xpro.2020.100210
Presynaptic Active Zone Plasticity Encodes Sleep Need in Drosophila.
Huang S, Piao C, Beuschel CB, Götz T, Sigrist SJ.
Current Biology 30:1077-1091.e5, 2020, https://doi.org/10.1016/j.cub.2020.01.019
Immune Receptor Signaling and the Mushroom Body Mediate Post-ingestion Pathogen Avoidance.
Kobler JM, Jimenez FJR, Petcu I, Kadow ICG.
Current Biology 30:4693-4709.e3, 2020, https://doi.org/10.1016/j.cub.2020.09.022
A spiking neural program for sensorimotor control during foraging in flying insects.
Rapp H, Nawrot MP.
Proceedings of the National Academy of Sciences 117:28412–28421, 2020, https://doi.org/10.1073/pnas.2009821117
Numerical Cognition Based on Precise Counting with a Single Spiking Neuron.
Rapp H, Nawrot MP, Stern M.
iScience 23, 2020, https://doi.org/10.1016/j.isci.2020.100852
A Plausible Mechanism for Drosophila Larva Intermittent Behavior.
Sakagiannis P, Aguilera M, Nawrot MP.
Lecture Notes in Computer Science (LNAI, volume 12413), Springer, Cham, 2020, https://doi.org/10.1007/978-3-030-64313-3_28
Identification of Dopaminergic Neurons That Can Both Establish Associative Memory and Acutely Terminate Its Behavioral Expression.
Schleyer M, Weiglein A, Thoener J, Strauch M, Hartenstein V, Weigelt MK, Schuller S, Saumweber T, Eichler K, Rohwedder A, Merhof D, Zlatic M, Thum AS, Gerber B.
Journal of Neuroscience 40:5990–6006, 2020, https://doi.org/10.1523/JNEUROSCI.0290-20.2020
Valence and State-Dependent Population Coding in Dopaminergic Neurons in the Fly Mushroom Body.
Siju KP, Štih V, Aimon S, Gjorgjieva J, Portugues R, Kadow ICG.
Current Biology 30:2104-2115.e4, 2020, https://doi.org/10.1016/j.cub.2020.04.037
Single neuron activity predicts behavioral performance of individual animals during memory retention.
Strube-Bloss MF, D’Albis T, Menzel R, Nawrot MP.
bioRxiv:2020.12.30.424797, 2020, https://doi.org/10.1101/2020.12.30.424797
Stochastic and Arbitrarily Generated Input Patterns to the Mushroom Bodies Can Serve as Conditioned Stimuli in Drosophila.
Warth Pérez Arias CC, Frosch P, Fiala A, Riemensperger TD.
Frontiers in Physiology 11, 2020, https://doi.org/10.3389/fphys.2020.00053
The Unc13A isoform is important for phasic release and olfactory memory formation at mushroom body synapses.
Woitkuhn J, Ender A, Beuschel CB, Maglione M, Matkovic-Rachid T, Huang S, Lehmann M, Geiger JRP, Sigrist SJ.
Journal of Neurogenetics 34:106–114, 2020, https://doi.org/10.1080/01677063.2019.1710146
2019
Autophagy within the mushroom body protects from synapse aging in a non-cell autonomous manner.
Bhukel A, Beuschel CB, Maglione M, Lehmann M, Juhász G, Madeo F, Sigrist SJ.
Nature Communications 10:1318, 2019, https://doi.org/10.1038/s41467-019-09262-2
Timing-dependent valence reversal: a principle of reinforcement processing and its possible implications.
Gerber B, König C, Fendt M, Andreatta M, Romanos M, Pauli P, Yarali A.
Current Opinion in Behavioral Sciences 26:114–120, 2019, https://doi.org/10.1016/j.cobeha.2018.12.001
In Vivo Optical Calcium Imaging of Learning-Induced Synaptic Plasticity in Drosophila melanogaster.
Hancock CE, Bilz F, Fiala A.
JoVE (Journal of Visualized Experiments):e60288, 2019, https://doi.org/10.3791/60288
An optogenetic analogue of second-order reinforcement in Drosophila.
König C, Khalili A, Niewalda T, Gao S, Gerber B.
Biology Letters 15:20190084, 2019, https://doi.org/10.1098/rsbl.2019.0084
Reversal learning in Drosophila larvae.
Mancini N, Hranova S, Weber J, Weiglein A, Schleyer M, Weber D, Thum AS, Gerber B.
Learning & Memory 26:424–435, 2019, https://doi.org/10.1101/lm.049510.119
Modulators of hormonal response regulate temporal fate specification in the Drosophila brain.
Marchetti G, Tavosanis G.
PLOS Genetics 15:e1008491, 2019, https://doi.org/10.1371/journal.pgen.1008491
Modulations of microbehaviour by associative memory strength in Drosophila larvae.
Thane M, Viswanathan V, Meyer TC, Paisios E, Schleyer M.
PLOS ONE 14:e0224154, 2019, https://doi.org/10.1371/journal.pone.0224154
Neuronal processing of amino acids in Drosophila: from taste sensing to behavioural regulation.
Toshima N, Schleyer M.
Current Opinion in Insect Science 36:39–44, 2019, https://doi.org/10.1016/j.cois.2019.07.007
One-trial learning in larval Drosophila.
Weiglein A, Gerstner F, Mancini N, Schleyer M, Gerber B.
Learning & Memory 26:109–120, 2019, https://doi.org/10.1101/lm.049106.118