The Isotopic Signature of Ecosystem Respiration in a Temperate Beech Forest

Jelka Braden-Behrens¹, H.J. Jost², Alexander Knohl¹

(1) Bioclimatology, Faculty of Forest Sciences and Forest Ecology, Georg-August University, Göttingen, Germany (jbraden1@gwdg.de) (2) Thermo Fisher Scientific, Bremen, Germany

Motivation and Objective

Respiration provides important information about the terrestrial carbon cycle. The stable isotopic composition of respired CO_2 has been e.g. used to identify the transfer time of assimilates from photosynthesis to respiration (see e.g. [1]) and to partition net CO_2 fluxes (see e.g. [2]).

The objectives of this study are:

- Testing the new Isotope Ratio Infrared Spectrometer (IRIS) Delta Ray (Thermo Scientific, Bremen) to measure the isotopic composition of ecosystem respiration $R_{eco}^{13}C$ and $R_{eco}^{18}O$
- Characterizing the measured seasonal variability of $R_{eco}^{13}C$ and $R_{eco}^{18}O$
- Analyzing the correlation between this variability in $R_{eco}^{13}C$ and different meteorological variables

Methods

- Measurement campaign: Three months in a managed beech forest in autumn 2015
- Set up: Measurement of CO_2 concentration, δ^{13} C and δ^{18} O in 9 different heights
- Instrument: Isotope Ratio Infrared Spectrometer (IRIS) Delta Ray (Thermo Scientific, Bremen) with automatic calibration.
- Method: Based on a Keeling Plot approach we calculated the isotopic composition of ecosystem respiration $R_{eco}^{13}C$ and $R_{eco}^{18}O$

Figure 1: An example for using the isotopic composition of respiration: flux partitioning

- Internal calibration (2.5 to 5 min)

Figure 2: Field site: managed beech forest

Our 30 minutes measurement cycle consisted of:

• Measuring all nine heights (app. 2.5 min /height)

• Measuring a target standard (syn. air with app. 400 ppm CO₂ - app. 2.5 min)

Results

Instrument performance

Precision

- Our measurement time was 20 s and the cell turne
- Allan deviation $\sigma_A(20s) < 0.1\%$ for both δ -values

Figure 4: Allan deviation σ_A for different averaging times of the isotope ratio infrared spectrometer IRIS (Thermo Scientific), compared to a 4Hz quantum cascade laser based spectrometer QCLAS that was running in parallel (Aerodyne Research Inc.)

Long-term stability under field conditions

The measured concentrations and δ -values $C \mid ppm$ for our target gas tank are shown with meta- $\delta^{13}C_{med}$ data in figure 5 and a comparison of the $\delta^{18}O_{me}$ target measurements to laboratory measurements are shown in table 1. Because the Table 1: Left: Average over all target measurements tanks δ -values were outside the calibration $\frac{1}{5}$, Right: High precise laboratory measurements of the range, this reflects the long-term accuracy only in the case of concentration.

excluding all time spans marked with diff. colors in fig. same gas tank at MPI Biogeochemistry in Jena, Germany . Errors denote standard deviations in both cases.

Figure 5: Time series of concentrations and δ -values for target measurements with color-coded meta-data

over time app. 12 s
es (c.f. Figure 4).

	0.50					
\mathcal{N}			Delta Ray δ^{13} C δ^{18} O		$\begin{array}{c} \mathbf{QCLAS} \\ \delta^{13}\mathbf{C} \mid \delta^{18}\mathbf{O} \end{array}$	
· · · ·	0.20		[‰]	[%0]	[%0]	[‰]
<u>۸</u>		$\sigma_A (0.25 \text{ s})$			0.36	0.24
M).10	$\sigma_A (1 \text{ s})$	0.40	0.29	0.20	0.14
	0	σ_A (20 s)	0.09	0.06	0.07	0.05
	10	σ_A (80 s)	0.05	0.03	0.12	0.07
	- 0.05	$\min(\sigma_A)$	0.03	0.02	0.06	0.04
	.02					
10+03	0					

	Field Meas.	Lab Meas.
<i>n</i>]	396 ± 0.2	396.5 ± 0.1
as [%0]	-37.9 ± 0.2	-37.0 ± 0.02
as $[\%_0]$	-35.8 ± 0.2	-34.7 ± 0.2

Problem with target gas flow Power failure Mar Contractor 15. Oct 01. Nov 15. Nov

Variability on seasonal timescale

The isotopic compositions of ecosystem respiration $R_{eco}^{13}C$ and $R_{eco}^{18}O$ show variations on seasonal timescales that exceed the measurement error (shown in figure 6). Additionally, they both change their behavior after the first (singular) snow event.

Figure 6: Seasonal variability of the isotopic signatures of respiration, errorbars denote the resp. standard error

Among all n-day-sums over meteorological variables we tested, we found the strongest correlation between $R_{eco}^{13}C$ (before first snow) and the 2day-sum of net radiation R_n with a time lag of 2 days. This significant, moderate, negative correlation can be interpreted in the following way:

$$R_n \uparrow \Rightarrow \text{Photosynthesis} \uparrow$$

$$\Rightarrow {}^{13}\text{C-Discrimination} \uparrow$$

$$\Rightarrow R_{eco}^{13}C \downarrow$$

For a period of high water availability (radiation is limiting)

Main conclusions

- trolled by photosynthetic flux for this period.

References

Acknowledgements

ISOFLUXES KN 582/7-1).

• The instrument showed sufficient accuracy and long term stability to analyze the seasonal variability of the isotopic composition of respiration in both 13 C and 18 O.

• Before the first snow in autumn 2015 13 C discrimination was controlled dominantly by photosynthesis (and therefore radiation) and not by the stomata (and therefore VPD). • The time lag between photosynthesis and respiration during this period was 2-3 days. • After the first snow event this correlation between photosynthesis and radiation vanished abruptly, yielding that the strong seasonal variations in $R_{eco}^{13}C$ were not con-

^[1] A. Ekblad and P. Högberg. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. *Oecologia*, 127(3):305–308, 2001.

^[2] R. Wehr and S.R. Saleska. An improved isotopic method for partitioning net ecosystem-atmosphere CO2 exchange. Agricultural and Forest Meteorology, 214-215:515–531, 2015.