The Isotopic Signature of Ecosystem Respiration in a Temperate Beech Forest

Jelka Braden-Behrens¹, H.J. Jost², Alexander Knohl 1

(1) Bioclimatology, Faculty of Forest Sciences and Forest Ecology, Georg-August University, Göttingen, Germany (jbraden1@gwdg.de) (2) Thermo Fisher Scientific, Bremen, Germany

Respiration provides important information about the terrestrial carbon cycle. The stable isotopic composition of respired $CO₂$ has been e.g. used to identify the transfer time of assimilates from photosynthesis to respiration (see e.g. [1]) and to partition net $CO₂$ fluxes (see e.g. [2]).

The objectives of this study are:

Motivation and Objective

- Testing the new Isotope Ratio Infrared Spectrometer (IRIS) Delta Ray (Thermo Scientific, Bremen) to measure the isotopic composition of ecosystem respiration $R_{eco}^{13}C$ and $R_{eco}^{18}O$
- Characterizing the measured seasonal variability of $R_{eco}^{13}C$ and $R_{eco}^{18}O$
- Analyzing the correlation between this variability in R_{eco} ¹³C and different meteorological variables

- Measurement campaign: Three months in a managed beech forest in autumn 2015
- Set up: Measurement of $CO₂$ concentration, δ^{13} C and δ^{18} O in 9 different heights
- Instrument: Isotope Ratio Infrared Spectrometer (IRIS) Delta Ray (Thermo Scientific, Bremen) with automatic calibration.
- Method: Based on a Keeling Plot approach we calculated the isotopic composition of ecosystem respiration $R_{eco}^{13}C$ and R_{ec}^{18}

Figure 1: An example for using the isotopic composition of respiration: flux partitioning

• Measuring all nine heights (app. 2.5 min /height)

• Measuring a target standard (syn. air with app. 400 ppm $CO₂$ - app. 2.5 min)

Methods

Figure 4: Allan deviation σ_A for different averaging times of the isotope ratio infrared spectrometer IRIS (Thermo Scientific) compared to a 4Hz quantum cascade laser based spectrometer QCLAS that was running in parallel (Aerodyne Research Inc.)

The measured concentrations and δ -values for our target gas tank are shown with meta- $\delta^{13}C_{meas}$ [‰] $\Big|$ -37.9 \pm 0.2 $\Big|$ -37.0 \pm 0.02 data in figure 5 and a comparison of the target measurements to laboratory measurements are shown in table 1. Because the Table 1: Left: Average over all target measurements tanks δ -values were outside the calibration range, this reflects the long-term accuracy only in the case of concentration.

Our 30 minutes measurement cycle consisted of:

The isotopic compositions of ecosystem respiration $R_{eco}^{13}C$ and $R_{eco}^{18}O$ show variations on seasonal timescales that exceed the measurement error (shown in figure 6). Additionally, they both change their behavior after the first (singular) snow event.

Figure 6: Seasonal variability of the isotopic signatures of respiration, errorbars denote the resp. standard error

-
-
- Internal calibration (2.5 to 5 min)

Figure 2: Field site: managed beech forest

Results

Instrument performance

Precision

- Our measurement time was 20 s and the cell turnow
- Allan deviation $\sigma_A(20s) < 0.1\%$ for both δ -values

Long-term stability under field conditions

Remarkable target measurement

Instrument issue

Instrument issue

Power failure **1998年 1999年1月** i grind

excluding all time spans marked with diff. colors in fig. 5, Right: High precise laboratory measurements of the same gas tank at MPI Biogeochemistry in Jena, Germany . Errors denote standard deviations in both cases.

Figure 5: Time series of concentrations and δ -values for target measurements with color-coded meta-data

Variability on seasonal timescale

Among all n-day-sums over meteorological variables we tested, we found the strongest correlation between $R_{eco}^{13}C$ (before first snow) and the 2day-sum of net radiation R_n with a time lag of 2 days. This significant, moderate, negative correlation can be interpreted in the following way:

$$
R_n \uparrow \Rightarrow \text{Photosynthesis} \uparrow
$$

\n
$$
\Rightarrow {}^{13}C\text{-Discrimination} \uparrow
$$

\n
$$
\Rightarrow R_{eco}^{13}C \downarrow
$$

For a period of high water availability (radiation is limiting)

• The instrument showed sufficient accuracy and long term stability to analyze the seasonal variability of the isotopic composition of respiration in both ^{13}C and ^{18}O .

 \bullet Before the first snow in autumn 2015 13 C discrimination was controlled dominantly by photosynthesis (and therefore radiation) and not by the stomata (and therefore VPD). • The time lag between photosynthesis and respiration during this period was 2-3 days. • After the first snow event this correlation between photosynthesis and radiation vanished abruptly, yielding that the strong seasonal variations in $R_{eco}^{13}C$ were not con-

Main conclusions

-
-
-
- trolled by photosynthetic flux for this period.

References

Acknowledgements

ISOFLUXES KN 582/7-1).

^[1] A. Ekblad and P. Högberg. Natural abundance of 13C in $CO2$ respired from forest soils reveals speed of link between tree photosynthesis and root respiration. *Oecologia*, 127(3):305–308, 2001.

^[2] R. Wehr and S.R. Saleska. An improved isotopic method for partitioning net ecosystem-atmosphere CO2 exchange. *Agricultural and Forest Meteorology*, 214-215:515–531, 2015.