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Abstract—Reputation systems rate the contributions to par-
ticipatory sensing campaigns from each user by associating
a reputation score. The reputation scores are used to weed
out incorrect sensor readings. However, an adversary can de-
anonmyize the users even when they use pseudonyms by linking
the reputation scores associated with multiple contributions.
Since the contributed readings are usually annotated with spa-
tiotemporal information, this poses a serious breach of privacy
for the users. In this paper, we address this privacy threat by
proposing a framework called IncogniSense. Our system utilizes
periodic pseudonyms generated using blind signature and relies
on reputation transfer between these pseudonyms. The reputation
transfer process has an inherent trade-off between anonymity
protection and loss in reputation. We investigate by means of
extensive simulations several reputation cloaking schemes that
address this tradeoff in different ways. Our system is robust
against reputation corruption and a prototype implementation
demonstrates that the associated overheads are minimal.

I. INTRODUCTION

Recent mobile phones are equipped with a plethora of
embedded sensors, integrate widespread wireless technologies
and complex processing capabilities. These technological fea-
tures have contributed to the emergence of a new paradigm
known as participatory sensing [1]. Participatory sensing
applications involve volunteers collecting sensor readings from
the surrounding environment using their mobile phones. The
collected sensor readings are reported to application servers,
where summaries are computed and published in the form of
maps and statistics. Several practical systems based on this
novel paradigm have been developed in recent years, which
include creating noise pollution maps [2] and obtaining real-
time road traffic information [3].

Participatory sensing applications are however exposed to
incorrect contributions due to their inherent open nature [4].
For example, participants may inadvertently position the phone
in an undesirable position while collecting sensor readings
(e.g., phone kept in bag while sampling street-level noise).
Moreover, malicious participants may deliberately contribute
bad data. Both behaviors result in erroneous contributions,
which need to be identified and eliminated to ensure the
reliability of the computed summaries. For this purpose,
reputation systems tailored to participatory sensing have been
proposed such as [4]. They assign reputation scores to the
participants based on the quality of their contributions and
then use these scores to weed out bad contributions. The

reputation scores can also serve as incentives for the users
to participate in the application. Such systems however need
to observe the contributions made by each device for an
extended period of time to compute the reputation and hence,
require linkability across multiple contributions from the same
device. An adversary can exploit these links to de-anonymize
the volunteers and compromise their privacy, since the sensor
readings usually include spatiotemporal meta-data [5]. In this
paper, we propose a solution that addresses this inherent
conflict between privacy and reputation requirements. Our
specific contributions can be summarized as follows:

1) We present IncogniSense, an anonymity-preserving rep-
utation framework based on blind signatures [6], which
is agnostic to both the reputation assignment algorithm
and the application. In IncogniSense, each user picks
a new pseudonym for each time period, which is used
to report sensor readings. Before the next period starts,
the user transfers the reputation score associated with
his current pseudonym to his next pseudonym. This
allows the user to conserve his reputation across multiple
periods, while limiting associations between his contri-
butions to a unique period.

2) IncogniSense cloaks the reputation to be transferred to
prevent an attacker from linking multiple pseudonyms.
As reputation cloaking has an inherent trade-off between
anonymity protection and loss in reputation, we explore
this design space by undertaking a detailed simulation-
based analysis of several cloaking mechanisms and we
especially study their resilience against linking attacks.

3) We conduct a thorough threat analysis showing the ro-
bustness of IncogniSense against reputation corruption.

4) We evaluate the feasibility of our approach by imple-
menting a proof-of-concept on Android Nexus S mobile
phones. Assuming that a new pseudonym is chosen
every 5 minutes, IncogniSense only incurs an additional
2.3% of energy expenditure, which is a small price to
pay for the enhanced privacy protection offered.

The paper is organized as follows. In Section II, we discuss
related work. We introduce our threat model in Section III
and present the IncogniSense framework in Section IV. We
conduct a multi-dimensional evaluation of IncogniSense in
Section V, before making concluding remarks in Section VI.
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II. RELATED WORK

We compare IncogniSense with existing anonymity-
preserving reputation systems designed for application do-
mains orthogonal to participatory sensing, as this specific
problem has not been addressed in the context of participatory
sensing, other than a mention of its importance as future
research [7]. To the best of our knowledge, we are the first
to propose a concrete framework for this paradigm including
a proof-of-concept implementation and a multi-dimensional
evaluation. While this paper discusses our solution in the
context of participatory sensing, IncogniSense has generic
applicability and is not necessarily restricted to resource-
constrained devices such as mobile phones.

Manifold reputation architectures based on pseudonyms
have been proposed for peer-to-peer networks. For example, in
[8], pseudonyms are created by Trusted Platform Modules and
attested by Certificate Authorities. In the solution presented in
[9], the users utilize a set of pseudonyms with the same rep-
utation to collect electronic coins centralized at a third party.
In contrast to our solution, both approaches are vulnerable
to identity-based attacks since users can control an arbitrary
number of pseudonyms. Another scheme presented in [10] pro-
poses context-based, self-certified, and Sybil-free pseudonyms
built using e-tokens. The users, however, cannot change their
pseudonyms once they are associated to a context. Finally,
STARS [11] extends existing peer-to-peer reputation systems
by traceability and anonymity. Complete anonymity of honest
clients is however not guaranteed since the scheme reveals the
identity of clients suspected to corrupt their reputation and is
subject to false positives.

IncogniSense shares the most similarities with [12] and
[13], which rely on periodic pseudonyms and transfer of
reputation between pseudonyms. As our work builds upon
the RuP algorithm [12], we present a detailed comparison in
Section IV-D. In short, RuP requires the clients to create n
temporary pseudonyms for each valid pseudonym and relies
on probabilistic proofs. As such, a malicious client can create
multiple pseudonyms and tamper with its reputation with a
success probability of 1/n. Increasing n reduces the threats to
reputation manipulation, but increases associated overheads. In
comparison to RuP, IncogniSense is robust against reputation
corruption and the clients generate only one pseudonym per
period. The protocol presented in [13], which extends the
ideas from [12], is based on the concept of k-anonymity [14].
They assume the existence of a third party server which forms
groups of clients sharing the same reputation and distributes
a signature key per group to sign the pseudonyms. The
clients must however trust each other not to collude with
the third party and/or other clients to reduce the anonymity
set. Moreover, the proposed protocol introduces additional
overhead for the clients to create pseudonyms as compared
to [12] and our solution.

III. THREAT MODEL AND ASSUMPTIONS

In this section, we present our threat model and detail
our assumptions. We consider that our adversary set includes

malicious clients, application servers, and the reputation and
pseudonym manager (RPM) (described in Section IV). The
adversaries follow the Dolev-Yao threat model [15], i.e., they
are able to listen to all communication, fabricate, replay,
and destroy messages. They are, however, not able to break
cryptographic mechanisms.

A. Threats to Reputation

The goal of the adversaries, primarily malicious clients, is
to corrupt the reputation system in order to artificially increase
their own reputation. Self-promotion can be achieved by means
of Sybil attacks, in which the malicious client creates an
arbitrary number of identities that vouch for each other [16].
Alternatively, malicious clients may replay old messages to
gain reputation without contributing new sensor readings.

We assume that the application server and the RPM are
protected against fraudulent access by well-established secu-
rity mechanisms. Hence, adversaries are not able to access
stored data, or change the behavior of applications. Denial of
service attacks are considered out of the scope of this paper.

B. Threats to Anonymity

Another goal of the adversaries is to breach the anonymity
of the clients. They track the interactions of the clients with
the reputation system and attempt to establish relationships
between successive pseudonyms and link them to a unique
real identity. We assume that the reported sensor readings do
not contain any direct indication of the identity of the clients
and that the interactions of the clients with the application
server are anonymized using, e.g., disposable IP and MAC
addresses and anonymous communication networks [17].

IV. THE INCOGNISENSE FRAMEWORK

We first provide an overview of the IncogniSense framework
and detail the underlying mechanisms. We then present our
reputation cloaking mechanisms and highlight the differences
between IncogniSense and the framework proposed in [12],
which forms the underlying basis for parts of our work.

A. Overview

The IncogniSense framework illustrated in Fig. 1 includes
clients, an application server, and a RPM (introduced in
Section III). The clients repeatedly collect sensor readings and
report them to the application server using pseudonyms, which
have a pre-determined validity period T . Each client reports
its sensor readings using its current pseudonym Pcurrent

generated in association with the RPM and based on blind
RSA signatures [6]. Blind signatures ensure the authenticity of
signed messages without revealing their content to the signing
entity and prevent the signing entity from linking the message
content with the identity of its creator. By employing blind
signatures, the RPM can guarantee that each client has a
unique pseudonym for each T . This not only prevents Sybil
attacks but also makes it impossible to link the pseudonym to
the real identity and thus protects the anonymity of the client.
The application server runs a reputation algorithm, which
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Fig. 1. IncogniSense framework

evaluates the sensor readings after each reporting and attributes
a reputation score Rscore to Pcurrent. The reputation score is
then transferred by the application server to the RPM, which
maintains reputation accounts for each pseudonym. Before the
end of T , the clients generate their next pseudonym Pnext

and transfers Rscore from Pcurrent to Pnext to conserve the
acquired reputation score after the expiration of Pcurrent. The
reputation transfer is realized using a reputation token RT
generated by the clients in collaboration with the RPM to
prevent reputation corruption. The transfer process also makes
use of blind signatures to prevent the RPM from linking
Pcurrent to Pnext. The application server eventually makes use
of the reputation scores to identify inaccurate contributions.
Depending on the selected reputation model, the application
server can discard the contributions with low reputation scores
or reduce the weighting for such contributions in the compu-
tation of summaries. Note that the design of both reputation
algorithm and model is considered out of the scope of this
paper. Existing solutions such as [4] can however be easily
integrated into our generic framework.

B. Underlying Mechanisms

The proposed solution is comprised of the following four
steps, which are repeated sequentially for each time period T .
We assume that each client has a permanent identifier ID,
a private key (dclient, nclient), a public key (eclient, nclient),
and is registered with the RPM. We also assume that the RPM
generates a set of transfer keys in the bootstrapping phase.

1) Pseudonym Generation: For each T , the RPM generates
a new private/public pair of signature keys common to all
clients: (dsignature, nsignature) and (esignature, nsignature).
The client first generates a private/public key pair (dP , nP )
and (eP , nP ) for its new pseudonym. The client uses nP

as its new pseudonym referred to as P and generates the
corresponding signature sP as follows. The client first prepares
the message mP using nP , the public signature key, and the
blinding factor r modulo nP , as follows:

mP = nP · resignature mod nsignature (1)

The client creates a signature smP
using a function of the

concatenation f of the triplet (mP , ID, T ) signed with its

permanent private key to guarantee the authenticity of mP :

smP
= f(mP ‖ ID ‖ T )

dclient mod nclient (2)

The client transmits mP , smP
, its ID, and the interval of

validity T for P to the RPM for blind signature. The RPM
verifies the authenticity of mP and that the client has no
existing pseudonym for this interval. After verification, the
RPM generates the blind signature sRPM signing mP :

sRPM = mP
dsignature mod nsignature (3)

The client finally generates the pseudonym’s signature sP from
the blind signature sRPM that achieves the generation of P ,
which becomes Pcurrent:

sP = sRPM · r−1
mod nsignature (4)

2) Reporting of Sensor Readings: Within T, the client
periodically reports sensor readings to the application server
using Pcurrent, the reporting period being common to all
clients. The application server verifies the validity of Pcurrent

with the RPM, evaluates the sensor reading using a reputation
model, and attributes a reputation score Rscore to Pcurrent,
with Rscore ∈ Z. The application server transmits Rscore to
the RPM, which add Rscore to Pcurrent’s reputation account.

3) Generation of Reputation Tokens: Before the expiration
of Pcurrent (i.e., at the end of T ), the client generates Pnext for
the next T (see step 1). It then requests the value of Pcurrent’s
reputation account from the RPM and uses one or several
reputation tokens to transfer it to Pnext. The generation of
each RT is comparable to the generation of the pseudonym,
except that the client does not generate any key pair and both
client and RPM use the aforementioned transfer keys for the
signature of the messages. Each transfer key pair is associated
to a reputation value and determines the reputation associated
to a given RT.

For each RT, the client selects a random bit string IDRT as
identifier and prepares the message mRT for blind signature
using the public transfer key corresponding to the RT’s value:

mRT = IDRT · retransfer mod ntransfer (5)

The client signs the message mRT with the signature smRT

using the private key (dPcurrent
, nPcurrent

) associated to
Pcurrent. The real identity of the client is hence not revealed
while transferring reputation from one pseudonym to the next.

smRT
= f(mRT ‖ Pcurrent ‖ Rscore)

dPcurrent modnPcurrent (6)

The client transmits mRT , smRT
, Pcurrent, and Rscore to

the RPM for blind signature. The RPM verifies that mRT

is used for the first time as well as the balance of the
reputation account of Pcurrent before decrementing it by
Rscore. After verification, the RPM blindly signs mRT with
the corresponding private signature key. The client finally uses
the blind signature to generate the final signature of the RT.

4) Reputation Transfer: Within the current T , the client
registers with the RPM using Pnext and hands over RT(s).
The RPM verifies that each RT has not been used before and
credits Pnext’s reputation account from the RT’s value.



C. Cloaking Mechanisms

In theory, the utilization of blind signatures prevents the
linking of consecutive pseudonyms. However, in practice, the
reputation transfer between two consecutive pseudonyms may
reveal insights about their succession. For example, consider
the case where Pcurrent has the highest reputation among
all pseudonyms. Now assume that after reputation transfer,
this same reputation score is associated with the pseudonym,
Pnext. It is fairly straightforward for an adversary to establish
a link between Pcurrent and Pnext. An adversary able to
track the reputation scores over several time intervals can
link pseudonyms used in different periods. To prevent such
attacks, we propose that the clients cloak their reputation
scores before their transfer. Since the RPM prevents unjustified
reputation promotion by controlling the generation of the RTs,
the clients only transfer reputation scores lower or equal to
their actual reputation. While cloaking the reputation scores
prevents a reputation analysis attack, it may cause degradation
in reputation score since it entails adding a perturbation to the
same. In this section, we present three different reputation
cloaking schemes, which address this tradeoff in different
ways. We evaluate their performances in Section V-B.

1) Floor Function Reputation Transfer (Floor): This
scheme divides the entire spectrum of reputation scores into
fixed intervals and classifies the clients into these intervals
based on their reputation scores. For the actual transfer,
the clients use the floor value of the reputation interval as
reputation score and transfer it using a single RT. Note that we
use the floor value to prevent unjustified reputation promotion.
Similar to the concepts of k-anonymity [14], the scheme forms
groups of pseudonyms sharing the same reputation score. The
larger the groups, the more indistinguishable the pseudonyms,
and the harder it is for the adversary to link consecutive
pseudonyms. The anonymity protection is thus determined
by the size of the groups, which depends on the selection
of the intervals. Selecting large intervals may increase the
number of pseudonyms within a group, but may negatively
affect the reputation scores due to the coarse granularity of
the chosen intervals. The size of the reputation intervals is
therefore an important design parameter for addressing the
tradeoff between anonymity and reputation.

2) Transfer of Random Sets from Reputation Partition Sets
(RandSet): RandSet divides the reputation score to be trans-
ferred into multiple RTs based on a predefined set partitioning
(e.g., (10, 50, 250)). For each reputation transfer, the division
of the reputation score into the set partitioning is determined
by each client individually. For example, a client can partition
a reputation score of 70 into one RT of value 50 and two RTs
of value 10 or 7 RTs of value 10. The client then randomly
selects one or more RTs handed over to the RPM. We refer to
p as the probability that an individual RT is used to transfer
reputation. In other words, each RT is discarded and not
transferred with a probability 1 − p. Both the division and
discarding mechanisms increase the entropy of the actually
transferred reputation and prevent the linkage between con-

TABLE I
COMPARISON OF THE CRYPTOGRAPHIC OVERHEAD

RuP [12] IncogniSense

Client

Generated n per interval 1 per intervalkey pairs
Prepared n per interval 1 per intervalmessages

RPM

Generated 1 1 per intervalkey pairs
Signature n-1 per interval 0verifications and per client

Number of 1 per interval 1 per interval
signatures and per client and per client

secutive pseudonyms. However, discarding RTs can reduce
the reputation scores. The diminution in reputation is linearly
correlated with the size of the RTs, i.e. discarding a large RT
leads to greater loss in reputation. Applying a set partitioning
with small RT values has a lower impact on the transferred
reputation, but incurs computation and transmission (i.e., band-
width) overheads for the clients and the RPM. In summary,
both set partitioning and discarding probability influence the
tradeoff between anonymity and reputation, and thus need to
be analyzed.

3) Transfer of Random Scores from Reputation Partition
Sets (RandScore): The initial reputation score is split into
different RTs of predefined size as in RandSet. During the
transfer, all the RTs are transferred. However, the transferred
score of the individual RTs is lowered according to a random
function. The set partitioning impacts on the entropy of the
transferred scores and the loss in reputation. The range of
the possible scores linearly increases with the size of the
RTs. Simultaneously, the transferred reputation statistically
diminishes, as the probability of transferring the initial RT
values decreases, while the size of the RTs increases.

Note that the spectrum of possible cloaking mechanisms is
not limited to the aforementioned schemes. We have specially
selected these schemes based on the diversity of their key
parameters to address the tradeoff between anonymity protec-
tion and reputation degradation and to provide a thorough and
extensive evaluation in Section V-B.

D. Comparison with the Existing Framework

We contrast IncogniSense with the framework proposed in
[12], since our work improves its ideas. In particular, we
highlight weaknesses of the RuP algorithm in terms of crypto-
graphic overhead and vulnerability to reputation manipulation
and argue how IncogniSense addresses these issues.

1) Algorithmic Differences: In the RuP algorithm, the client
includes the interval of validity of the pseudonym in the blind
signature. Each client creates n pseudonyms to generate a sole
valid pseudonym. The n pseudonyms are transmitted to the
RPM, which randomly selects n−1 pseudonyms and requests
the client to send the corresponding random values r−1. The
RPM then encrypts the n − 1 pseudonyms and verifies that
they are valid for the same interval. If the verification is
successful, it signs the nth pseudonym, which becomes the
valid pseudonym. The generation of RTs also necessitates that



the client prepares n messages for blind signature and the
RPM verifies n−1 messages before signing the nth message.
In IncogniSense, we decouple the interval of validity of the
pseudonym and the value of the reputation to transfer from
the blind signatures by introducing periodic signature keys and
different transfer keys for each value of RT, reciprocally.

2) Cryptographic Overhead: Table I summarizes the cryp-
tographic overhead for generating pseudonyms associated with
both schemes. In [12], the client generates n key pairs,
selects n values r and r−1, and executes n encryptions to
generate one valid pseudonym. The generated key pairs of
non-selected pseudonyms should not be reused to prevent the
RPM from linking the pseudonyms to the client’s identity.
In IncogniSense, the client prepares one blind signature per
pseudonym, i.e., it generates only one key pair and encrypts
one message, and the RPM verifies only one signature per
interval and per client (instead of n− 1), which significantly
reduces the computational overhead if we assume a large
base of clients. Similar conclusions can be drawn for the RT
generation, except that no key pair is generated by the client.

3) Reputation Manipulation: In the RuP algorithm, the
RPM cannot verify the interval of validity of the pseudonym
included in the blinded message. It randomly verifies n − 1
of the n generated pseudonyms and signs the nth, hoping
that it contains the same validity interval as the verified
pseudonyms. This implies that malicious clients can gener-
ate multiple pseudonyms for a given time interval with a
probability of 1/n. If such an attack is successful, then the
adversaries can seriously compromise the reputation system
(see Section III-A). Likewise, malicious clients can generate
fraudulent RTs and increase their reputation. IncogniSense
completely eliminates the possibility of Sybil attacks and
also prevents adversaries from compromising the reputation
transfer process. The utilization of periodic signature keys
and the verification of already existing pseudonyms by the
RPM guarantees that each client has a unique pseudonym
per interval. Similarly, the utilization of different transfer keys
allows the RPM to easily verify and guarantee the value of
the transferred reputation, preventing malicious clients from
generating falsified RTs.

In summary, IncogniSense achieves better protection against
reputation manipulation, while significantly reducing the cryp-
tographic overhead for the client. Note that the reputation
transfer mechanisms are further compared in Section V-B.

V. EVALUATIONS

The goal of our evaluations is threefold: (1) analyze the
robustness of IncogniSense against identified threats to rep-
utation, (2) measure the level of anonymity and quantify
the reduction in reputation scores for the different cloaking
schemes, and (3) empirically measure the overhead for the
mobile clients.

A. Robustness against Threats to Reputation
We consider the assumptions and threat model presented in

Section III and argue that IncogniSense is resilient against the
following attacks.

1) Sybil Attacks: Malicious clients can attempt to generate
multiple pseudonyms for a given interval to increase their
reputation through cross-recommendations. However, Incog-
niSense is protected against these attacks since the RPM
maintains a list of the clients that have presented pseudonyms
for blind signature along with their validity interval. Once a
pseudonym has been signed for a given interval, the RPM
discards all other pseudonyms submitted by the same client.

2) Replay Attacks: Malicious clients may attempt to replay
old messages for the following two reasons: (1) artificially
increase their reputation by replaying RTs, (2) debit the repu-
tation account of honest clients without the victims receiving
the associated credit by replaying mRT (see Eq. 5). The RPM,
however, maintains lists of both IDs (i.e., IDRT and the
final ID) associated with each RT (see Section IV-B4). The
RPM can thus detect malicious clients trying to corrupt the
reputation system and hence, prevents both attacks. Malicious
clients are prevented from forging RTs and manipulating the
reputation of other clients, as the creation of the RTs requires
the signature of the corresponding pseudonym, which is only
possible using the pseudonym’s private key.

3) Manipulation of Reputation Accounts: Malicious clients
can attempt to alter the reputation stored in the RPM. The
clients, however, do not have direct access to their reputation
accounts and the RPM is protected against unauthorized access
using standard cryptographic primitives. As such, this attack
cannot be launched.

4) Reporting of Falsified Sensor Readings: Malicious
clients can try to report falsified sensor readings on behalf
of others to degrade their reputation. IncogniSense protects
honest clients against this attack by requesting clients to
authenticate with the application server and the RPM. These
entities verify the validity of the pseudonyms before consid-
ering their contributions and/or delivering them information.
Such an attack would only be successful if malicious clients
can access the private keys of the targeted clients and those
of their respective pseudonyms, which is beyond the scope of
our attacker model.

In summary, we have shown that IncogniSense is robust
by design against a variety of threats directed against the
reputation system by malicious clients.

B. Anonymity Protection and Reduction in Reputation Score

We simulate the resilience of IncogniSense against the
threats to anonymity identified in Section III-B. In particular,
we measure the level of anonymity, i.e. unlinkability, that
can be achieved by the different reputation cloaking schemes
introduced in Section IV-C. As reputation cloaking has an
inherent trade-off between anonymity protection and loss in
reputation, we also quantify the reduction in reputation score
caused by the different cloaking approaches.

1) Simulation Setup and Method: We implemented a sim-
ulator in Java to model the behavior of clients, RPM and
application server. Each simulation run is for 100 time in-
tervals. We repeat each simulation 100 times and present the
averaged results. All clients remain active for the duration of



TABLE II
PROBABILITY DISTRIBUTION OF REPUTATION SCORES

Attribution probability 0.25 0.35 0.25 0.1 0.05
Reputation scores 10 5 0 -5 -10

the simulation. During each interval, the clients generate 5
random sensor readings and report them to the application
server. The application server runs a simulated reputation
algorithm, which randomly attributes reputation scores to
the pseudonyms according to the distribution presented in
Table II. Note that the actual values of both sensor readings
and reputation scores do not impact the performances of
the cloaking schemes in terms of linkability and can thus
be selected randomly. Moreover, we consider the study of
additional reputation models and distributions as future work.

We adopt the assumptions of our threat model (see Sec-
tion III) and assume that the RPM and the application server
are malicious internal observers. We further assume that adver-
saries collude and aim at linking consecutive pseudonyms. For
each simulated interval, the RPM and the application server
have access to the following information. The RPM observes
the generated RTs, the utilized RTs, and the updates of the
reputation accounts, while the application server observes the
current pseudonyms, the initial and final reputation scores, and
the updates of reputation scores.

Based on the observed information, the adversaries identify
the set of pseudonyms active in each interval. We refer to
SPcurrent

as the set of pseudonyms active in a given interval
and SPnext

as the set of pseudonyms active in the subsequent
interval. As all clients remain active for the duration of the
simulation, |SPcurrent | = |SPnext | and there exists a bijection
between the sets SPcurrent

and SPnext
. For each pseudonym

Pcurrent, the adversaries attempt to identify its successor
Pnext, according to the following operations. The adversaries
first look for pseudonyms in SPnext

that have a reputation
score lower or equal to the reputation score of Pcurrent before
the end of the current period. Indeed, the clients can have ei-
ther transferred their full reputation or cloaked it, incurring loss
in reputation. Then, the adversaries identify all pseudonyms in
SPcurrent

that have a single link to a pseudonym in SPnext
and

eliminate all other links due to the bijection between SPcurrent

and SPnext . Similarly, they identify all pseudonyms in SPnext

having a single link to a pseudonym in SPcurrent
and eliminate

all other links. Finally, as a measure of the level of anonymity
provided by the reputation transfer, we calculate how many
potential successors xk (i.e., links) a pseudonym k has on
average. We express the amount of potential successors as the
fraction of the total number of clients N = |SPcurrent |. For
each interval, we calculate this metric as follows.

1

N
·

N∑
k=1

xk (7)

A value of 1 implies perfect anonymity achieved during
the transfer, since all pseudonyms within SPnext

are potential
successors to each individual pseudonym of SPcurrent

. The
lower the value, the smaller the set of pseudonyms that are
the potential successors, which in turn implies that it may be

easier to establish a link between consecutive pseudonyms. We
can therefore directly assess the quality of the anonymization
achieves by the cloaking schemes using this metric.

2) Evaluation Results: By applying the above setup and
method, we first individually evaluate the reputation cloaking
schemes (see Section IV-C). In particular, we analyze the effect
of the most important configuration parameter relevant to each
scheme and the resulting impact on the anonymity of the
clients. Secondly, we compare how these schemes fare against
each other. In this comparison, we use the transfer scheme used
in [12] as a baseline. This scheme, also referred to as the Full
Reputation Transfer (Full) scheme, always transfers the entire
reputation in a single RT. It hence represents the worst case
in terms of anonymity protection, since the reputation score
remains the same for consecutive pseudonyms, which allows
for easy linkability by the adversaries. If not noted otherwise,
we investigate a population of 100 clients and use RTs of
value 10 for easier comparison of the different schemes. Note
that we assume a constant and synthetic workload to facilitate
the fair comparison of the schemes. A study of dynamic user
populations and workloads is considered as future work. These
schemes can also be applied for larger populations, although,
anonymity protection becomes increasingly important as the
population size decreases.

In the Floor scheme, the clients use the floor value of given
reputation intervals as reputation score and transfer it using a
single RT. Fig. 2(a) illustrates the influence of different interval
sizes (10, 15, 20, 25, 30) on the quality of the anonymity
protection. The results show that the choice of large reputation
intervals results in a higher level of protection, as more clients
are grouped within the same interval and therefore become
indistinguishable during the RT transfer. This protection comes
at the expense of greater perturbation in reputation for some of
the clients, since the difference between the actual reputation
value and the floor of the interval also increases on average.
Over time, the protection level decreases, since the reputation
values of the individual clients spread over wider intervals as
shown in Fig. 5(b) for an interval size of 20. Fig. 5 shows the
development of reputations scores over time and is annotated
with the 0.25- and 0.75-quantile of reputation scores of the
clients for time interval 50. As a result, individual clients
are more easily distinguishable in our attacker model, since
potential successors can be identified more easily. The Full
scheme shows a similar behavior (cf. Fig. 5(a)), but is able to
preserve higher reputation scores. This is illustrated in Fig. 4,
which shows the observed diminution in reputation scores per
interval caused by the cloaking. With both schemes, clients
are therefore easy to identify after a number of rounds since
only a small number of peers have similar reputation scores.

In the RandSet scheme, the reputation score is partitioned
into different RTs of predefined size and a reputation transfer is
performed with probability p for each RT. Fig. 2(b) illustrates
the influence of the choice of p (50%, 60%, 70%, 80%, 90%)
using the set partitioning (10, 50, 250) on the anonymity
protection level. The fraction of potential successors stabilizes
early, which means that attackers do not gain further evidence
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Fig. 3. Scheme comparison and impact of the number of clients on the percentage of successors
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Fig. 4. Comparison of transferred reputation

even if monitoring for extensive periods of time. This is due
to the reputation scores, which are not constantly increasing
over time, but fluctuate in a certain interval as shown in
Fig. 5(c) for a probability p of 80%. Indeed, at a certain
time instant the average increase in reputation due to the
contribution to the application equals the average loss due to
the discarding of reputation during the transfer. In contrast,
the Full and Floor schemes constantly increase the reputation
values as shown in Fig. 5(a) and 5(b). The percentage of
potential successors using RandSet lies between 7% and 26%
for p equal to 90% and 50%, respectively (see Fig. 2(b)). The
degree of anonymity protection increases with decreasing p
i.e., increasing the discarding probability 1− p. Fig. 4 shows
the preserved reputation score for p equal 80%. Obviously,
for increasing p, the preserved reputation per round increases
likewise. Note that the preserved reputation stays slightly
below p, since the partitioning of the sets might not exactly
fit the exact reputation value.

In the RandScore scheme, the reputation score is also par-
titioned into several RTs, which are all used in the reputation
transfer. The transferred score is however lowered according
to a random function. We analyze the influence of different
set partitions while randomly discarding between 0% and 50%
(following a continuous uniform distribution) of the reputation
score of a RT. Fig. 2(c) shows that the level of anonymity
protection increases with the set partitioning moving towards
larger RT values. The smaller the lowest RT size in a set
(1, 5, 10, 15), the worse the protection of anonymity, since
individual clients can now be tracked by the number of RTs
exchanged (but not the random reputation score exchanged).
Similar to RandSet, the performance quickly stabilizes since
the reputation values inherently stay within certain bounds as

shown in Fig. 5(d) (for a partition set of (10, 50, 250) and
a discarding probability of 25%), which makes identification
very hard even for sophisticated attackers. Note that RandSet
and RandScore perform similarly, if the same partitioning
is applied and p equals the mean of the score discarding
probability used in RandScore.

For comparison purposes, we select one variant of each
scheme that demonstrated a good tradeoff between anonymity
protection and reputation loss based on the previous analysis.
The parameterization is as follows. Floor utilizes an interval
size of 20; RandScore partitions the RT sets into: 10, 50,
250 and has a mean value of the discarding probability of
25%; RandSet retains RTs with a probability p of 80% and
utilizes a similar partitioning (10, 50, 250). To model a
participatory sensing scenario, we investigate populations of
100 and 300 clients. We present the results in Fig. 3 for all
proposed reputation cloaking schemes for both scenarios under
consideration. We include an additional scheme referred to as
Hybrid, which combines the RandSet and RandScore schemes.
The Hybrid scheme utilizes the partitioning (10, 50, 250)
and retains RTs with a probability p of 80%. The reputation
score of the retained RTs is then randomly lowered as in
the RandScore scheme. The Hybrid scheme is robust against
observers that can track the number of RTs or the reputation
scores obtained/transferred, since it cloaks both values during
transfer. As seen from both graphs in Fig. 3, all schemes are
rather robust in the face of increasing the client base from
100 to 300. In summary, the Hybrid scheme provides the
best anonymity protection followed by RandScore, RandSet,
Floor, and the Full scheme. Due to the constantly increasing
reputation, Full and Floor degrade over time, while the other
schemes provide a constant protection.
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Fig. 5. Distribution of reputation score amongst clients over time
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Fig. 7. Estimated daily cost in battery lifetime

Fig. 6 shows the number and the length of the pseudonym
chains, i.e. the amount of identified consecutive pseudonyms,
for all schemes. Note that chains of length two represent iden-
tified links between two consecutive pseudonyms. Schemes
that allow for long pseudonym chains are weaker than schemes
that only allow the attacker to identify short chains. The Hy-
brid scheme is the most resilient scheme against attacks since
it only allows adversaries to build very short chains of unique
predecessor-successor relations (always shorter than 10). The
RandScore (no chains longer than 13) and the RandSet (no
chains longer than 25) have a vast majority of unlinkable
clients, which is in line with our previous observations of a
good anonymity protection. The Floor and the Full schemes
perform worst in terms of identified chain length and number
of identified chains. In a few cases, they allow adversaries to
identify chains of up to 84 and 93 pseudonyms, respectively.
Since the reputation scores with Full and Floor constantly
increase, it is much easier for an attacker to follow individual
pseudonyms. As a countermeasure, one could limit the max-
imum reputation score a client can obtain. The introduction
of an upper bound would help to keep well behaving clients
together in terms of reputation scores, thus making it much
harder for an attacker to build pseudonym chains. However, a
careful study of the effects of upper bounds is considered out
of the scope of this work.

The anonymity of the clients is, however, protected at
the price of a reduction in reputation as shown in Fig. 4.
Clients utilizing the Hybrid scheme suffer the highest loss
in reputation, followed by the RandScore and the RandSet
schemes. The Full and the Floor schemes manage to transfer
nearly the complete reputation scores.

In summary, we have demonstrated that some of the pre-
sented schemes can provide an effective anonymity protection,
even if adversaries are able to track the reputation transfer

between pseudonyms for long periods of time. We have shown
that the cost of a high degree of anonymity protection is the
loss of reputation. If we assume that all clients adopt the
same cloaking scheme, all clients will be similarly affected
by the incurred loss in reputation. This is consistent with the
typical use of reputation in participatory sensing applications,
where the application server is mainly interested in comparing
the reputation scores of different clients and correspondingly
associate a weight to their sensor readings. In the rare case
where the absolute reputation score is of interest, the users
may consider using a scheme, such as Full or Floor, which
preserves the reputation value but is more susceptible to
attacks. However, if minor perturbations in the scores are
acceptable, then schemes such as RandScore, RandSet, and
Hybrid may be considered. Note that our evaluation setup
has been designed as the best case scenario for a potential
adversary, since we assume that each client is continuously
active and cannot store reputation scores for future use. In a
real-world deployment, the clients may however report sensor
readings intermittently. This complicates the identification
process of consecutive pseudonyms for the adversaries and
thus, improves the anonymity protection provided by the
schemes. The performance of the cloaking schemes can be
further improved by introducing reputation transfer between
non-successive periods. We however consider an analysis of
these additional features as future work.

C. Empirical Evaluation of Overheads

We implemented a proof-of-concept of IncogniSense to
demonstrate the feasibility of our approach. In particular, we
quantified the overhead in terms of energy consumption for
the mobile clients. The overhead should be maintained as
low as possible so as to not drain the battery of the mobile
phones. In our implementation, the mobile client program was
developed on Android Nexus S phones, while the application



TABLE III
MEASURED OVERHEAD PER RT AND KEY GENERATION FOR THE CLIENTS

RT Key pair
Average battery lifetime (hour) 5:09 5:18
Average number of executions 5037500 16860
Average execution time (ms) 4 1129

server and RPM were implemented as two Apache Tomcat
servlets. The activities of the clients (including the cloaking
schemes) are managed by a background thread. The blind
RSA signatures are based on 1024-bit private/public key pairs.
The pseudonyms and RTs are stored in a SQLite database
on the clients, the access to which is strictly restricted to
our application. The RPM especially maintains lists of the
generated pseudonyms and utilized RTs in MySQL databases.
The clients, the RPM, and the application server communicate
via Wi-Fi and the communications are secured using HTTPS.

We conducted a first experiment to measure the impact of
the generation of pseudonyms, RTs, and keys on the clients’
battery lifetime. We configured a benchmarking client to
repeatedly execute the aforementioned sequence of operations
until the exhaustion of the battery. We disabled all other
programs and functions and repeated each experiment 20 times
on different clients. The results presented in Table III indicate
that the overhead to generate keys for the new pseudonyms
is significantly higher than the overhead to create RTs. Note
that the overhead to create a pseudonym is equal to the
overheads caused by both RT and key pair generation. Incog-
niSense saves 90% of energy while reducing the probability
of reputation corruption from 0.1 to 0 as compared to [12]
assuming n = 10. In a second experiment, we configured
a client to generate pseudonyms and RTs with a period T.
We examined the impact of both the duration of T and the
number of generated RTs on the battery usage and compared
it with a reference implementation. Note that the impact of the
cloaking schemes on the battery usage is negligible compared
to the cryptographic operations required to generate RTs and
pseudonyms. Fig. 7 shows the overall reduction in battery life-
time per day imputed to our approach. By selecting T greater
than 5 minutes, the daily cost in battery lifetime remains below
2.3%, rendering our approach especially feasible for resource-
constrained devices such as mobile phones.

VI. CONCLUSIONS

We have proposed an anonymity-preserving reputation
framework called IncogniSense, which is agnostic to both
the applications and the applied reputation algorithm. Our
system utilizes periodic pseudonyms which are generated
using blind signature and relies on a secure reputation transfer
mechanism between these pseudonyms. We have introduced
the concept of reputation cloaking to prevent an adversary
from de-anonymizing the users by linking the reputation scores
associated with their contributions. As cloaking has an inherent
trade-off between anonymity protection and loss in reputation,
we have explored the design space and extensively examined
the performances of several different schemes. Based on

this analysis, we have provided guidelines for the choice
of the appropriate cloaking scheme in accordance with the
application requirements. We have demonstrated the resilience
of our system against typical threats. Finally, a prototype
implementation confirms the feasibility of our solution.
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