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Abstract

The increasing presence of renewable sources re-
quires power grid operators to continuously monitor
electricity generation and demand in order to maintain
the grid’s stability. To this end, smart meters have
been deployed to collect real-time information about
the current grid load and forward it to the utility in a
timely manner. High resolution smart meter data can
however reveal the nature of appliances and their mode
of operation with high accuracy, and thus endanger
user privacy. In this paper, we investigate the impact
on user privacy when the consumption data collected
by distributed smart metering devices are preprocessed
prior to their usage. We therefore assess the impact on
the successful classification of appliances when sensor
readings are (1) quantized, (2) down-sampled at a
lower sampling rate, and (3) averaged by means of an
FIR filter. Our evaluation shows that a combination
of these preprocessing steps can provide a balanced
trade-off that is in the interests of both users (privacy
protection) and utilities (near real-time information).

1. Introduction

The volatile nature of renewal sources requires
electric utilities to constantly maintain up-to-date
knowledge about generation and load in order to avert
the risk of power outages. As a result, many countries
have already deployed smart meters widely, or are
currently in the process of doing so [1]. While this
is of benefit to the utilities, the transmission of pre-
cise information about the current activity in people’s
households is often perceived as a threat to user pri-
vacy. This concern is underpinned by research results
that have shown that information about the current
user activities and even the television content can be

inferred based solely on smart meter data (e.g., [2],
[3]). So while users may be reluctant to provide high-
resolution data to their utilities because of the possible
privacy implications, utilities require this consumption
data at a high temporal resolution in order to adapt
their generation to the changing demand.

The field of privacy-aware data processing has
received significant attention in orthogonal domains
like participatory sensing ([4], [5]). Due to the different
nature of the data collect by smart meters, e.g., the
absence of location information, the applicability of
such mechanisms is however very limited. Hence,
we investigate to which extent preprocessing of the
collected power readings can eliminate possibilities to
infer appliance types solely based on their consumption
data. To this end, we apply different mechanisms
to obfuscate the data and analyze to which degree
appliance types can still be identified after this pre-
processing step. More specifically, we investigate how
quantization, down-sampling, and averaging succeed in
eliminating characteristic signatures from the data.

Instead of analyzing data that aggregates a com-
plete household’s consumption, we herein focus on
distributed smart metering. In this scenario, individual
metering devices are installed between each appli-
ance’s mains plug and the wall outlet. The reasons
for selecting this application scenario are twofold.
Firstly, existing approaches to infer device activity
from smart meter data have shown that the disag-
gregation of loads performs significantly better when
less appliances are connected at the same time [6]. A
more efficient privacy protection is thus needed when
individual appliances are being monitored. Secondly,
very few household-wide meter data sets are available,
and these only cover a small number of households
(e.g., REDD [7]). In contrast, the Tracebase repository
used in this paper contains more than 1,500 appliance
power consumption traces, and thus allows for a better
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generalization of our results. First, we provide an
overview of related work from the domains of data
privacy and smart metering in Sec. 2. Subsequently,
we describe our designed software framework and
the preprocessing steps in more detail in Sec. 3. Our
evaluation settings are explained in Sec. 4, followed
by the discussion of our evaluation results in Sec. 5.
Finally, we conclude this paper in Sec. 6.

2. Related Work

The rise of smart meters has led to the availability
of an unprecedented resolution of power consumption
readings. To date, two major applications have emerged
that rely on these data, namely supporting the utilities
to match supply and demand as well as the creation
of smart buildings. While smart building functionali-
ties can be realized when accurate measurements are
available (cf. [8], [9], [10]), the same methods can be
applied by third parties (e.g., the utility or external
attackers) to infer the current situation in a building.
The CEN-CENELEC-ETSI Smart Grid Coordination
Group outlines the information security requirements
to the smart grid in [11]. Although proposing a sepa-
ration of personal information and actual power con-
sumption data, countermeasures to prevent inferring
user activities from their meter data are not specif-
ically regarded in the document. In order to protect
users from such intrusions into their privacy, several
solutions have thus been presented in related work.
Cryptographic means to ensure a secure transport of
data between end users and utilities are presented
in [12], [13], [14]. Although these approaches ensure
that third party attackers cannot retrieve the data, they
still allow the utility to gain access to the readings in
unaltered form. This limitation is addressed in [15] and
[16], where solutions are presented that aggregate data
collected by multiple meters before relaying it to the
utility. While the users are protected against attacks by
utilities in this case, they need to trust and cooperate
with other households owners.

Approaches that operate locally have also been
presented. Efthymiou and Kalogridis have shown that
by transmitting smart meter data in an anonymized
manner, utilities may be able to infer household ac-
tivities, but are unable to link them to the actual
households [17]. The addition of noise to the mea-
surements can also be applied in smart grids in order
to obfuscate user behavior [18], although it has not
yet been analyzed in the domain of smart electricity
grids. Also operating on a local basis, the privacy-

aware data preprocessing step presented in [19] shows
that privacy can be increased by applying filters that
eliminate certain characteristics from the power meter
data, but its efficacy is not analyzed in the domain
of smart metering. Finally, instead of manipulating
the collected readings, external storage components
have been discussed as options to alter a building’s
consumption and thus eliminate characteristic features
from the data. The use of batteries to smooth the
load curve has been presented in [20], [21], but the
limitations of state-of-the-art battery technology, e.g.,
decreasing capacities and high financial cost, render
this technology inapplicable for many scenarios.

3. Concept and Software Framework

The primary objective of this paper is to evaluate
the extent of privacy protection that can be achieved by
preprocessing the data collected by distributed smart
meters. In order to analyze the efficacy of this prepro-
cessing, we first quantify the privacy threat resulting
from the unprocessed transmission of power consump-
tion data. Subsequently, results based on preprocessed
data are compared to this baseline in order to draw reli-
able conclusions on the degree of additional protection
attained by preprocessing. To establish the baseline
detection accuracy, we have thus designed a system
that is able to detect the type of an appliance based
on its electric power consumption data. The system
extracts specific characteristics that uniquely represent
each appliance type based on its power consumption
behavior, and memorize them in the form of a machine
learning model. When the system is supplied with
a power consumption trace collected from another
device, it extracts the characteristic features from the
trace, compares them to the knowledge stored in its
model, and returns the device type with most similar
characteristics. The objective of this paper, namely
obfuscating device-specific characteristics in the power
consumption data, should thus lead to larger number
of false identifications. Hence, we use the fraction of
appliances that can no longer be correctly identified as
a measure of the efficacy of our data preprocessing.

3.1.0verall System Architecture

Our overall system is composed of distributed me-
tering units that connect between the wall outlet and an
electric appliance, as well as a server on which the data
analysis is performed. This architecture is visualized in
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Fig. 1. Continuous lines indicate mains connections,
whereas dashed lines reflect the wireless data transfer
between the meters and the server. All metering units
return their data once per second to the server, which
records the power consumption traces in its database
for their subsequent classification. Before feeding the
resulting stream of power consumption data into the
application identification component, we apply differ-
ent preprocessing steps to the data, as outlined in
Sec. 3.2. Subsequently, the appliance identification step
extracts representative features from the data stream
and uses a machine learning component to facilitate
the classification of incoming data. Feature extraction
and machine learning are detailed in Sec. 3.3.

3.2Data Preprocessing

For our evaluation, we have selected three mecha-
nisms to alter the data prior to their use for appliance
identification. We explain them as follows and visu-
alize their impact on an excerpt from a dishwasher’s
operation cycle, which is depicted in Fig. 3a.

Quantization. Value quantization is realized by round-
ing the actual power consumption values to a multiple
of a pre-defined quantization factor g. Because the
quantization step is stateless and requires no historical
data, no delay is introduced by the introduction of this
preprocessing step. The application of quantization to
the dishwasher’s consumption data is shown in Fig. 3b
for ¢ = 80 watts. It can be seen that quantization elim-
inates the slight slope on top of the power-intensive
heating periods while the general shape is maintained.

Down-Sampling. This second preprocessing option
reduces the temporal frequency at which measurements
are made available by returning a sample of the actual
power consumption only every w seconds. For all
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Figure 2. Appliance classification architecture

further samples until the next sampling point, the pre-
viously transmitted value is repeated instead. Like the
quantization step, down-sampling does not introduce
a delay, and Fig. 3¢ shows the output of the down-
sampling step for w = 150 seconds.

Averaging. The third preprocessing alternative is the
combination of an averaging of the input data over
a time window of w seconds and its down-sampling
according to the previous paragraph. The averaging
is thus equivalent to an FIR filter with rectangular
filter function. In contrast to the previously described
preprocessing steps, averaging introduces a time lag
of w seconds, and may thus only be applicable in
scenarios where this can be tolerated by the utility.
The output of our averaging preprocessor for w = 150
seconds is shown in Fig. 3d, from which the combina-
tion of averaging and down-sampling manifests itself
in the form of steps on the steep edges of the power
consumption curve.

3.3.Classification and Features

The actual classification is based on our previous
appliance classification framework [22], which we
briefly revisit as follows. Based on the overall process
flow shown in Fig. 2, power consumption traces of
24 hours duration are first collected from electric
appliances. In a subsequent step, characteristic features
are extracted from each of the traces and stored in
the form of a feature vector that is annotated by the
actual appliance type. Similar to [9] and [23], our
system utilizes more than 500 different features from
different domains in order to describe the character-
istic properties of the power consumption traces. We
regard features from both the temporal and frequency
domain in order to incorporate both the sudden changes
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Figure 3. Visualization of a dishwasher’s consumption data before and after applying preprocessing steps

encountered on appliance activation as well as pe-
riodicities throughout the day into our classification
model. We combine many different aspects of an
appliance’s power consumption (e.g., peak values and
shape) to reach a high number of correct classification
results. Each of the resulting annotated feature vectors
is subsequently forwarded to the machine learning
component, in which a classifier constructs its model
based on the data.

Our previous results have shown that classification
accuracy values in excess of 90% could be achieved
when all of the presented features were being used
for the appliance classification [22]. In other words,
a very large fraction of the input data (composed
of more than a thousand appliance traces) could be
correctly classified solely based on their power con-
sumption data throughout a day. In our evaluations we
have demonstrated that maximum and average power
consumption values are the most important features
for the classification of appliances. Based on this
observation, we have specifically chosen to preprocess
the power consumption data in a way that alters the
consumption characteristics and analyze its impact on
the classification accuracy.

While our previous work has thus effectively pro-
moted anti-privacy by identifying the types of electric
appliances, we address the opposite target in this
paper, namely how data preprocessing can render our
appliance identification system ineffective.

4. Evaluation Setup

Our evaluation is based on the software system
presented in Sec. 3. We have installed the server
components on a dedicated machine that maintains the
database, the preprocessing modules, and the appliance
identification engine. For the construction of the clas-
sification model, we have used the Weka data mining
toolkit [24]. Based on the comparison of different
classifiers in our previous work, we have chosen to use
the Random Forest classifier for the machine learning
step, as it has been shown to result in both a high
classification accuracy for the task at hand and a fast
execution time.

The data for the classification has been taken from
our Tracebase project [22]. The Tracebase already
features more than 1,200 diurnal power consumption
traces of more than 30 household appliance types. Fur-
thermore, we have collected more than 300 additional
traces in order to base our evaluation on an even larger
corpus of data. On average, the power consumption
traces have been collected at a high granularity of
one sample per second and with a value resolution of
one watt. We list the appliance types, the number of
different instances, and the total number of traces used
in our evaluation in Table 1.

In order to put the achieved device classification
results into perspective, we compare them to the base-
line, in which no preprocessing steps are applied (i.e.,



Table 1. Power traces used in our evaluation

Device type # appliances # traces
Alarm clock 1 5
Bean-to-cup coffee maker 1 43
Bread cutter 1 12
Coffee maker 5 77
Cooking stove 1 16
Desktop computer 9 126
Dishwasher 3 65
Ethernet switch 3 11
External USB hard disk drive 4 29
Freezer 1 9
HDTV media center 1 5
HiFi stereo amplifier 3 88
Internet router 1 20
Iron 1 3
Lamp 6 77
Laptop computer 6 50
Microwave oven 5 51
Monitor (CRT) 2 14
Monitor (TFT) 14 178
Playstation 3 console 2 12
Powered USB hub 1 10
Printer 1 6
Projector 1 8
Refrigerator 8 189
Solar-thermal system 1 8
Subwoofer 2 28
Television set 10 138
Toaster 4 21
Tumble dryer 2 9
Vacuum cleaner 1 1
Video projector 1 19
Washing machine 7 50
Water fountain 1 56
Water kettle 8 115
Xmas lights 1 6
Total 119 1,555

the parameters are chosen as ¢g=1 watt, w=1 second, no
averaging). Subsequently, we conduct a comprehensive
analysis of the classification accuracy when varying
the parameter values for ¢ and w. We regard down-
sampling window sizes of w=1...400 seconds and
analyze quantization factors between ¢=1...180 watts.
Additionally, we consider the case when data are
averaged before the down-sampling and quantization
steps are applied. For this case, we have also used
the down-sampling window size parameter w as the
averaging filter’s window size.

5. Evaluation

We have conducted several evaluations in order to
quantify the improvements to user privacy protection
offered by the presented preprocessing steps. After
determining the bounds for the classification success
rates, we thus present the results of our comprehensive
analysis of the parameter space and quantify the error
that is added to the data.

5.1Baseline Values

In order to put the evaluation results into perspec-
tive, we have first evaluated the baseline detection
accuracy for the input data as listed in Table 1. In this
case, the application identification component has re-
turned an achievable accuracy value of 90.5%, i.e., nine
out of ten devices could be correctly identified solely
based on their power consumption. Likewise, the worst
classification result is equal to the random selection
of an appliance class, and can thus be calculated as
/s appliances. For the given input set of 35 appliance
types, the minimum accuracy thus equals 2.9%.

5.2.Quantization and Down-sampling

In this first evaluation step, we analyze the impacts
of quantization and down-sampling only. As both pre-
processing steps influence the classification results, we
conduct a two-dimensional analysis for multiple com-
binations of down-sampling and quantization factors
within the parameter ranges specified above. We show
the results in Fig. 4a. Note that for a quantization
factor of ¢g=1 watt and a down-sampling window
w=1 second, the classification accuracy is equal to
the 90.4% reached in the case without preprocessing,
as outlined above. While both approaches show a
significant degradation of the classification accuracy
already for small values of ¢ and w, their behavior
for larger values differs. More precisely, quantization
achieves a degradation of the detection accuracy from
90.5% to 58.1% when a factor g=180 watt is chosen. In
contrast, the impact of down-sampling in the temporal
domain does not manage to reduce the classification
accuracy below 73.8%, even for a window size of
w=400 seconds. The extremal combination of both
quantization and down-sampling with w=400 seconds
and ¢=180 watts leads to an overall classification
accuracy of 37.7%.

5.3.Quantization, Down-sampling & Averaging

While the down-sampling in the previous evalua-
tion has taken a sample from the actual data every
w seconds, we investigate the impact of its combina-
tion with averaging next. Again, we conduct a two-
dimensional analysis, in which we vary the quanti-
zation factor ¢ as well as the averaging and down-
sampling window size w. Both preprocessing steps
share the same window size, so effectively the average
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value of the last w seconds is reported for a duration
of w seconds. The fact that the averaging component
integrates over the actual power consumption in the
time domain leads to the expectation of less privacy-
compromising details to be contained in the trace. The
results for this evaluation are visualized in Fig. 4b.
Despite the averaging, however, the figure shows a
very similar behavior to the previous analysis without
averaging. In fact, the quantization step again achieves
to degrade the detection accuracy to 58.1% when
a factor ¢g=180 watt is chosen. When averaging is
used, however, down-sampling does not even manage
achieve the degradations of the previous experiment,
but always stays above 78.9%. Again, the using the
maximal values of w=400 seconds and ¢=180 watts
leads to an accuracy of slightly above 37.5%.

5.4.Quantization and Down-Sampling Errors

By applying any of the presented preprocessing
steps, the signal is altered from its original form
(cf. Fig. 3). As the transmitted smart meter readings
are possibly used for the capacity planning of util-
ities, but might significantly differ from the actual
readings due to the preprocessing, we complete our
evaluation with an analysis of the error introduced
by our preprocessing steps. We therefore determine
the RMS error Pgrjrs between the original and the
preprocessed power consumption traces. The results
for three devices of different operating power ranges
are shown in Fig. 5. In essence, they indicate that the
quantized values show a comparably small difference
to the original sequence, whereas down-sampling leads
to more significant discrepancies and might hence be
less favorable for electric utilities.

5.5Discussion

The results in Fig. 4 show that increasing the
parameters for both down-sampling and quantization
(i.e., w and ¢q) lead to increased levels of privacy
protection. Their impact however differs, as down-
sampling with a window size w=400 seconds only
succeeds in reducing the classification accuracy by
approximately 16 percentage points. In contrast, value
quantization has been shown to have a significantly
better performance in terms of privacy protection and
succeeded in degrading the classification accuracy by
up to 53 percentage points for large values of gq.
Averaging the consumption traces did not have any
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measurable impact on the privacy protection, and even
led to a slightly worse privacy protection. In other
words, the privacy-preserving effect of down-sampling
is effectively reduced by prepending it with an aver-
aging filter.

6. Summary and Conclusions

In this paper, we have analyzed how preprocess-
ing distributed smart metering data can decrease the
possibility of attributing a power consumption trace to
the underlying electric appliance. To this end, we have
studied the impact of quantization, down-sampling,
and averaging on more than 1,500 daily power con-
sumption traces. More than 500 characteristic features
were extracted from the traces, which allowed for
the correct classification of appliances at 90.4% ac-
curacy when no preprocessing was applied. After the
application of the presented preprocessing steps, how-
ever, the detection accuracy experienced a measurable
degradation. For example, quantization to g=40 watts
and down-sampling to w=40 seconds already lead to
a situation in which 30% less appliances could be
detected properly, whereas the average error was still
comparably small. In terms of privacy protection, value
quantization has been shown to lead to better results
than down-sampling or averaging alone. While keeping
the error between the actual and the recorded data
within definable bounds, its application to distributed
smart metering data can strongly enhance user privacy.
As a general result, our comprehensive study enables



application designers to carefully choose the required
trade-off between timeliness, intentional inaccuracy,
and privacy protection.
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