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tion of this problem is essentially analogous to the quan-
tum mechanical tunneling problem treated in a semiclas-
sical approximation [33] (see also [34–36] for a discussion
in the statistical mechanics context). The theory of large
deviations gives the dominant scaling of the escape rate
r in the weak-noise limit as [37, 38]

r ⇠= e
�S(qb;qa)/D, S(qb; qa) = inf

t�0
S(qb, t; qa). (12)

The optimal path that provides the lowest (infinimum in
Eq. (12)) action is achieved for t ! 1 [33]. For � =
0, S(qb; qa) can be determined analytically as twice the
height of the energy barrier, �V = V (qb)� V (qa). Since
D = 2T for thermal noise, Eq. (12) thus recovers the
Arrhenius result [1]. In this case, the optimal escape or
“excitation” path is the time-reverse of a deterministic
relaxation path from qb to qa [34–36].
For � 6= 0, deterministic relaxations with g

⇤ = 0 still
solve the EL equations and have zero action, but their
time-reversal no longer gives the excitation paths. This
is clear from the predictions for di↵erent amplitude dis-
tributions in Fig. 1, which we have confirmed by direct
path sampling. The optimal escape paths have the char-
acteristic instanton shape: for large t the system spends
most of its time close to qa and qb while the actual bar-
rier transition is sharply localized in time. The key ob-
servation is that the instanton shape varies with �, while
the deterministic relaxation and its time reverse are en-
tirely independent of � and �. Moreover, we observe
that the optimal action S(qb; qa) is reduced compared
to the Gaussian limit of the noise for a range of small
� values: the non-Gaussian noise makes escape faster.
Di↵erences between amplitude distributions become pro-
nounced especially in the limit � ! 0: the Gaussian case
is approached continuously with the low-order truncated
� and for constant and Gaussian distributed noise am-
plitudes, though the approach is extremely slow for the
latter (Fig. 2). For exponential and Gamma noise, the
action is discontinuous at � = 0: as � ! 0 it converges
to a value considerably smaller than 2�V . Puzzlingly,
for ↵ > 0 the small � regime appears inaccessible, with
q
⇤ becoming complex below some threshold.
In order to understand these surprising observations,

we proceed analytically and integrate out g directly from
Eq. (7). In the weak noise-limit this can again be done by
saddle point integration and gives an action for q alone.
(Technically we discretize into small time intervals dt and
take dt ! 0 after D ! 0.) Defining �(k) = k

2
/2+��̄(k),

the resulting action is S[q] =
R
ds⇡(q̇(s) + V

0(q(s))).
Here ⇡(·) is the Legendre transform of �(·), i.e. ⇡(f) =
max[kf � �(k)] with the maximum taken over the range
of k where �̄(k) remains non-singular. Note that the
function ⇡ is not equivalent to the Hamiltonian H since
we have integrated out the momenta ig. In fact, since
q̇+V

0(q) = ⇠ from the original equation of motion, the ac-
tion S[q] =

R
ds⇡(⇠(s)) gives the weight of any trajectory

-4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

ln l

S n
or
m

-2 -1 0 1 2
0

0.5

1 S 0

ln A0

FIG. 2: (Colors online) The normalized action Snorm =
S(qb; qa)/

�
2�V/(1 + �A2

0)
�
with A0 = 1 obtained for the

same potential as in Fig. 1. The reference value 2�V/(1 +
�A2

0) is the action for the Gaussian limit of �, i.e. truncated
after the quadratic term. The �↵ curve is dashed where op-
timal paths cannot be found from the EL equations because
they involve jumps. Inset: Snorm as a function of lnA0 for
�exp and �↵, at fixed D� = �A2

0 = 1. For large A0 (small �)
the curves converge to S0 =

R
dqmin(2V 0(q), 1/A0).

of the noise (averaged again over small dt) in the large
deviation limit D ! 0. The function ⇡(⇠) thus general-
izes the simple quadratic ⇠

2
/2 appearing in the Wiener

measure exp[�
R
ds ⇠(s)2/(2D)] for Gaussian noise.

One can now think of q(t) as a path in the (q, v)-plane,
with v = q̇. Then the action reads S =

R
dq ⇡(v +

V
0(q))/|v| and for each q we can find v = q̇ simply as the

minimum of ⇡(v+V
0(q))/|v|. We do not need to enforce

the total time constraint t =
R
dq/|v| as we want t ! 1

and the integral automatically diverges at both ends for
paths between stationary points of V . The trivial global
minimum is v = �V

0(q), which describes deterministic
relaxation. For an excitation from qa to qb > qa we need
v > 0, on the other hand. The condition for a minimum
of ⇡(v + V

0(q))/v with respect to v for excitation paths
can be cast in the form

V
0(q) = �(k)/k, (13)

v = �
0(k)� V

0(q) (14)

using basic properties of Legendre transforms. Here, k
has to be found from Eq. (13) and then gives v using
Eq. (14). This implicitly defines a function v = q̇ =
⌅(V 0(q)) and hence characterizes the shape of the exci-
tation path. Moreover, we obtain the action simply as

S =

Z qb

qa

dq k(q), (15)

where k(q) is the solution of Eq. (13). Eqs. (13–15) re-
produce existing results for special cases. In the Gaus-
sian case (� = 0) one has �(k) = k

2
/2; thus k(q) =

2V 0(q) and v = V
0(q), the expected time reverse of
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Areas for Bachelor projects

Non-Equilibrium Statistical Physics
AG Peter Sollich

Institut für Theoretische Physik, Georg-August-Universität Göttingen

Techniques you can learn

Equilibrium statistical physics
• Well-defined framework
• Fluctuation-response relations for dynamics
• Changes of scale / coarse-graining straightforward

Motivation Research questions

Non-equilibrium statistical physics
• Many / most systems of interest not at equilibrium
• May take too long to equilibrate: transients matter, aging
• Or be driven from outside (biological systems), which

breaks detailed balance (microscopic reversibility)
• Often no Hamiltonian, system defined purely by dynamics

(e.g. agent-based models, network dynamics)
• Even this dynamical description may be unknown

• What general frameworks for non-equilibrium are there?
• How do we change scale or focus on subsystems?
• What structures and behaviours can non-equilibrium 

dynamics produce?
• How do we analyse systems with many different timescales?
• Can we learn dynamical models from data?
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• Path integrals (coherent states, Martin-Siggia-Rose)
• Trajectory thermodynamics, large deviation techniques
• Field-theoretic methods & simulations
• Cavity methods for networks
• Long-time scaling, stochastic simulation, molecular dynamics
• Random matrix theory

𝑍 = Tr 𝑒!"# → ?

Active matter
• Dynamics of dense active matter:

Long-range correlations? Avalanches
of rearrangements? Active doping? 

• Non-reciprocal interactions: Multiple 
instability length scales in field theory, 
travelling states, oscillator systems 

• Rheology of active matter,
elastoplastic models

• Active processes in dynamics of          
. polymer networks

Dynamics with
non-Gaussian noise

• Relevant in bacterial swimmer 
suspensions, granular gases, …

• Exact solutions in low noise limit
• Time for crossing potential barrier?
• Is non-Gaussian noise more efficient?
• Effects of activity, e.g. self-propulsion?

Dimensionality effects?

Path-based 
thermodynamics

• Study dynamical large deviations: 
trajectories with high current, activity 

• Probe by biasing trajectory distribution: 
thermodynamics of fluctuating paths,
dynamical phase transitions

• Interaction of driving (bias) and aging?
• Universality classes of aging?

Dynamics 
on networks

• Simple picture of amorphous material: 
hopping on network of metastable states

• Non-eq dynamics: competition of energetic 
(barriers) & entropic (connectivity) effects

• Flexible model: energy-connectivity 
correlations (local minima, saddles), …

• Analysis by random matrix theory, links to
. many-body localization, ...

Subnetworks &
coarse graining

• Most biological networks too large for 
intuitive understanding: reduce to subnets

• Gives memory functions, can be nonlinear 
(for multiple fixed points)

• Machine learning network topology from 
memory effects (boundary structure)?

• Coarse-graining larger networks by 
“milestoning”?

Amorphous
matter & rheology

• Amorphous materials (glass, sand, 
emulsions, biopolymers) trapped in 
metastable states

• Effects of disorder & heterogeneity on 
dynamics & mechanical behaviour
(rheology)?

• Important also for biophysics, e.g. in
. cytoskeletal rheology

Phase separation
in complex mixtures

• Relevant in soft matter (colloids), biology 
(cytoplasm, lipid membranes)

• How do particle species redistribute 
between phases? Effect of crowding?

• Non-eq. structures by slow kinetics? 
• Growth of competing phases?


