Non-Equilibrium Statistical Physics

AG Peter Sollich

Institut für Theoretische Physik, Georg-August-Universität Göttingen

Motivation

Equilibrium statistical physics

- · Well-defined framework
- · Fluctuation-response relations for dynamics
- · Changes of scale / coarse-graining straightforward

$$Z = \operatorname{Tr} e^{-\beta H} \rightarrow ?$$

Non-equilibrium statistical physics

- · Many / most systems of interest not at equilibrium
- May take too long to equilibrate: transients matter, aging
- Or be driven from outside (biological systems), which breaks detailed balance (microscopic reversibility)
- Often no Hamiltonian, system defined purely by dynamics (e.g. agent-based models, network dynamics)
- Even this dynamical description may be unknown

Research questions

- What general **frameworks** for non-equilibrium are there?
- How do we change scale or focus on subsystems?
- What structures and behaviours can non-equilibrium dynamics produce?
- · How do we analyse systems with many different timescales?
- Can we learn dynamical models from data?

Techniques you can learn

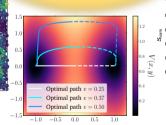
- Path integrals (coherent states, Martin-Siggia-Rose)
- Trajectory thermodynamics, large deviation techniques
- · Field-theoretic methods & simulations
- · Cavity methods for networks
- · Long-time scaling, stochastic simulation, molecular dynamics
- Random matrix theory

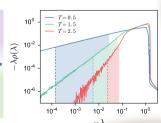
Areas for Bachelor projects

Active matter

- Dynamics of dense active matter: Long-range correlations? Avalanches of rearrangements? Active doping?
- Non-reciprocal interactions: Multiple instability length scales in field theory, travelling states, oscillator systems
- Rheology of active matter, elastoplastic models
- Active processes in dynamics of polymer networks

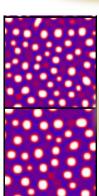
Dynamics with non-Gaussian noise


- Relevant in bacterial swimmer suspensions, granular gases,
- Exact solutions in low noise limit
- Time for crossing potential barrier?
- Is non-Gaussian noise more efficient?
- Effects of activity, e.g. self-propulsion? Dimensionality effects?


Path-based thermodynamics Study dynamical large deviations:

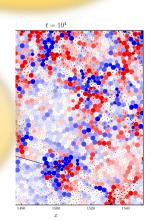
- Study dynamical large deviations: trajectories with high current, activity
- Probe by biasing trajectory distribution: thermodynamics of fluctuating paths, dynamical phase transitions
- Interaction of driving (bias) and aging?
- Universality classes of aging?

Subnetworks & coarse graining


- Most biological networks too large for intuitive understanding: reduce to subnets
- Gives memory functions, can be nonlinear (for multiple fixed points)
- Machine learning network topology from memory effects (boundary structure)?
- Coarse-graining larger networks by "milestoning"?

Dynamics on networks

- Simple picture of amorphous material: hopping on network of metastable states
- Non-eq dynamics: competition of energetic (barriers) & entropic (connectivity) effects
- Flexible model: energy-connectivity correlations (local minima, saddles),
- Analysis by random matrix theory, links to many-body localization, ...



Phase separation in complex mixtures

- Relevant in soft matter (colloids), biology (cytoplasm, lipid membranes)
- How do particle species redistribute between phases? Effect of crowding?
- Non-eq. structures by slow kinetics?
- Growth of competing phases?

Amorphous matter & rheology

- Amorphous materials (glass, sand, emulsions, biopolymers) trapped in metastable states
- Effects of disorder & heterogeneity on dynamics & mechanical behaviour (rheology)?
- Important also for biophysics, e.g. in cytoskeletal rheology

