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Abstract

We propose extensions of penalized spline generalized additive models for

analyzing space-time regression data and study them from a Bayesian

perspective. Non-linear effects of metrical covariates and time trends are

modelled through Bayesian versions of penalized splines, while correlated

spatial effects follow a Markov random field prior. This allows to treat

all functions and effects within the same general framework by assigning

appropriate priors with different forms and degrees of smoothness. Inference

is based on a generalized linear mixed model representation. This

approach can be viewed as posterior mode estimation and is closely

related to penalized likelihood estimation in a frequentist setting. Variance

components, corresponding to inverse smoothing parameters, are then

estimated by using marginal quasi-likelihood.

Bayesian structured additive regression

Consider regression situations, where observations (yi, xi, ui), i = 1, . . . , n,

on a response y, a vector x = (x1, . . . , xp) of metrical covariates, time

scales or spatial covariates and a vector u of further covariates are given.

Generalized additive and semiparametric models (Hastie and Tibshirani,

1990) assume that, given xi and ui, the distribution of yi belongs to

an exponential family, with mean µi = E(yi|xi, ui) linked to an additive

semiparametric predictor ηi by

µi = h(ηi), ηi = f1(xi1) + . . . + fp(xip) + u′iγ. (1)

Here h is a known response function, and f1, . . . , fp are unknown smooth

functions of the covariates.

Priors for a function

Let fj = (f(x1j), . . . , f(xnj)) be the vector of corresponding function

evaluations at the observed values of xj. In the following we will always be

able to write fj as the matrix product of a design matrix Xj and a vector

of unknown regression parameters βj, i.e.

fj = Xjβj.

Similarly, priors for βj can be brought into a general form as well. The

general form of the prior is given by

p(βj|τ2
j ) ∝ exp(− 1

2τ2
j

β′jKjβj) (2)

where Kj is a penalty matrix that penalizes too abrupt jumps between

neighbouring parameters. In most cases Kj will be rank deficient and

therefore the prior for βj will be partially improper. The variance parameter

τ2
j is equivalent to the inverse smoothing parameter in a frequentist

approach and controls the trade off between flexibility and smoothness.

A particular prior depends on the type of the covariate and on prior beliefs

about the smoothness of fj. In the following we give some examples:

Metrical covariates and time scales

• A flexible and parsimonious possibility to model non-linear effects of

metrical covariates and time scales are P-splines.

• Basic assumption:

fj(x) = spline of degree l with equally spaced inner knots

t1, ..., tr between xmin and xmax

= βj1Bj1(x) + ... + βj,r+l+1Bj,r+l+1(x),

where Bj1, ..., Bj,r+l+1 is a B-spline basis.

• The design matrix Xj consists of the basis functions evaluated at the

observations, i.e. Xj(i, k) = Bjk(xi).

• Idea:

– Define a relatively large number of inner knots to guarantee enough

flexibility.

– Assign a smoothness prior for βj1, ..., βj,r+l+1 to penalize too rough

functions fj. This can be achieved through first or second order

random walks

βjm = βj,m−1 + ujm or βjm = 2βj,m−1 − βj,m−2 + ujm

with Gaussian errors ujm ∼ N(0, τ2
j ) and diffuse priors for initial

values.

– One obtains Kj = D′
jDj where Dj is a first or second order difference

matrix.

• References: Eilers, Marx (1996), Lang, Brezger (2003), Brezger, Lang

(2003).

Spatial covariates

• The values of x ∈ {1, . . . , s, . . . , S} represent the location or site in

geographical regions.

• We may estimate only a structured spatially correlated effect or split

up the spatial effect into a structured (correlated) and an unstructured

(uncorrelated) component:

fj(s) = fj,str(s) + fj,unstr(s).

• Each site is associated with one parameter, i.e.

fj,str(s) = βstr
js and fj,unstr(s) = βunstr

js .

• A common choice are Markov random fields (Besag, York and Mollié,

1991) for the structured effect, e.g.

βstr
js |βstr

j,−s, τ
2
j ∼ N

∑
k∈∂s

1
Ns

βstr
jk ,

1
Ns

τ2
j

 , (3)

where

∂s denotes the sites, which are neighbours of site s and

Ns are the number of neighbours.

• For the unstructured effect funstr
j we assume that the parameters βunstr

js

are i.i.d. Gaussian

βunstr
js |τ2

j ∼ N(0, τ2
j ). (4)

• For both cases the design matrix Xj is a 0/1 incidence matrix where

the number of columns is equal to the number of different sites. If

observation i belongs to site s, then the element in the i-th row and the

s-th column is one, zero otherwise.

Unordered group indicators

• Suppose x is now a grouping variable with values x = 1, . . . ,m, . . . ,M .

The values of x may denote a unit or cluster index, or the location in

geographical maps.

• To account for unobserved unit or group specific heterogeneity one

possible way is to include an additive random effect into the predictor.

Then we assume the unit or group specific effects βjm to be i.i.d.

Gaussian,

βjm|τ2
j ∼ N(0, τ2

j ). (5)

• Again the design matrix is a 0/1 incidence matrix and the penalty matrix

is the identity matrix I.

• An unstructured spatial effect is a special case of (5) with the regions of

a geographical map as the grouping variable.

Possible Extensions

• Interactions between covariates may be modelled through Varying

Coefficient Models. This also allows to incorporate random slopes

in the model, since models with unordered group indicators as effect

modifiers are equivalent to models with random slopes.

• A more flexible approach for modelling interactions between metrical

covariates can be based on two dimensional surface fitting. Two

dimensional P-splines, defined as the tensor product of two one

dimensional B-Splines with a spatial smoothness prior, are described

in Lang and Brezger (2003).

• All extensions can be cast into the general form (2) and may therefore

be treated using the same methodology as presented here.

Mixed model representation

To rewrite the model (1) as a generalized linear mixed model (GLMM) we

proceed as follows:

• Decompose the vectors of regression coefficients βj into an unpenalized

and a penalized part:

βj = Xunp
j βunp

j + Xpen
j βpen

j . (6)

• Xunp
j contains a basis of the nullspace of the penalty matrix Kj and

Xpen
j is given by Xpen

j = Lj(L′
jLj)−1, where Lj is a full column rank

matrix with Kj = LjL
′
j. A requirement for the choice of Xunp

j and

Xpen
j is that L′

jX
unp
j = (Xunp

j )′Lj = 0 holds.

• In general Lj can be obtained from the spectral decomposition

Kj = ΓjΩjΓ′j as Lj = ΓjΩ
1
2
j , where Ωj contains the positive eigenvalues

of Kj and Γj is formed by the corresponding eigenvectors.

• In some cases more favorable decompositions of Kj can be found. For

instance, for P-splines one may choose Lj = D′
j, where Dj is the first

or second order difference matrix.

• For P-splines with first order random walk penalty and Markov random

fields Xunp
j is simply a vector of ones. For P-splines with second order

random walk Xunp
j is a two column matrix composed from a vector of

ones and the vector of the (equidistant) knots of the spline.

• For unordered group indicators a decomposition is not necessary since

Kj = I. In this case the unpenalized part vanishes completely.

• From decomposition (6) we get

1
τ2
j

β′jKjβj =
1
τ2
j

(βpen
j )′βpen

j .

and from the general prior (2) it follows that

p(βunp
j ) ∝ const

and

βpen
j |τ2

j ∼ N(0, τ2
j I).

• Finally, defining

X̃ = (X1X
pen
1 X2X

pen
2 · · · XpX

pen
p ),

βpen = ((βpen
1 )′, . . . , (βpen

p )′)′

and

Ũ = (X1X
unp
1 X2X

unp
2 · · · XpX

unp
p U),

βunp = ((βunp
1 )′, . . . , (βunp

p )′, γ′)′.

yields a generalized linear mixed model with linear predictor

η = Ũβunp + X̃βpen,

fixed effects βunp and random effects βpen with

βpen ∼ N(0,Λ)

and Λ = diag(τ2
1 , . . . , τ2

1 , . . . , τ2
p , . . . , τ2

p ).

• The GLMM representation allows to examine the identification problem

inherent to nonparametric regression from a different angle: Except for

i.i.d. random effects the matrix product XjX
unp
j contains the identity

vector and therefore Ũ has not full column rank. So all identity vectors

have to be eliminated from Ũ to guarantee identifiability.

• Now we can utilize GLMM methodology for simultaneous estimation of

the smooth functions and the variance parameters τ2
j .

• Especially, variance parameters may be estimated via marginal likelihood.

The marginal likelihood of τ2 = (τ2
1 , . . . , τ2

p ) is defined as

l(τ2) =
∫

p(y|βunp, βpen, τ2)p(βpen)dβpendβunp.

For Gaussian response the maximization of l(τ2) yields restricted

maximum likelihood (REML) estimates. For more general responses

a Laplace approximation to l(τ2) has to be used.

• Since τ2 is estimated via marginal likelihood, the estimates f̂j can be

seen as empirical Bayes / posterior mode estimates.

• References: Fahrmeir, Kneib, Lang (2003), Kneib (2003)

Simulation study

We carefully compared the presented empirical Bayes approach with a fully

Bayesian approach that uses MCMC techniques for posterior analysis (see

Fahrmeir, Lang, 2001a, 2001b, Lang, Brezger, 2003 and Brezger, Lang,

2003 ) through a simulation study. The results of this simulation study

can be summarized as follows:



• In general, the empirical Bayes approach yields better point estimates of

the functions fj in terms of MSE.

• The differences are most noticeably for Bernoulli distributed response

and turn out to be smaller for Gaussian, Poisson or Binomial distributed

response with at least 3 repeated binary observations.

• The empirical Bayes approach tends to smoother function estimates.

This can also be shown theoretically (Kauermann, 2002).

• Coverage probabilities meet the nominal level for smooth functions of

metrical covariates. This is not the case for spatial and random effects,

where coverages are far from the nominal level.

• Since no problems with coverage probabilities occur in the fully Bayesian

analysis a combination of both approaches seems to be promising:

The variance components are estimated via marginal likelihood while

the function estimates and the credible intervals are obtained from an

MCMC analysis, that uses these variance components.

• The combination leads to estimates, that keep the smaller MSE of the

empirical Bayes estimates, but inherit the better coverage properties

from the fully Bayesian analysis.

Applications

Rents for flats: A spatial study

According to the German law, owners of apartments or flats can base an

increase in the amount that they charge for rent on ”average rents” for flats

comparable in type, size, equipment, quality and location in a community.

To provide information about these ”average rents”, most larger cities

publish ”rental guides”, which can be based on regression analysis. In our

first application we use data from the city of Munich collected in 2002 for

a sample of approximately 3000 flats.

As response variable we choose the monthly net rent per square meter in

German Marks R. Covariates are given as follows:

F floor space,

Y year of construction,

L location of the flat in Munich,

u vector of 25 further (binary) covariates.

For our analysis we choose a geoadditive Gaussian model

R = η + ε

with predictor

η = γ0 + f1(F ) + f2(Y ) + f3(L) + u′γ.

The effects f1 and f2 of floor space and year of construction are modelled

by cubic P-splines with 20 knots and a second order random walk penalty.

For the spatial effect f3(L) we choose the Markov random field prior (3).

Effect of floor space
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Figure 1: Estimated effect of floor space with pointwise 95% credible

intervals.

Effect of year of construction
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Figure 2: Estimated effect of year of construction with pointwise 95%

credible intervals.
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Figure 3: Estimated spatial effect.

Figures 1 and 2 display the estimated effects of floor space and year

of construction. Both figures show a monotone but obviously nonlinear

dependency of the net rents on the metrical covariates.

The estimated spatial effect, shown in Figure 3, reflects quite well what we

know from expert assessments, with an increase of average rents in popular

subquarters along the isar river and near to parks.

A space-time study on forest damage

The data used in our second application have been collected in yearly visual

forest damage inventories carried out in a forest district around Rothenbuch

in the northern part of Bavaria from 1983 to 2001. The observation area

extends 15 km from east to west and 10 km from north to south, with 84

stands of trees as observation points.
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Figure 4: Temporal development of the frequency of damaged trees.
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Figure 5: Percentage of damage, averaged over the entire observation

period.

As response we consider the damage state of beeches. For each tree, the

defoliation degree serves as an indicator of its damage state, resulting in a

binary response yit with yit = 1 (damage of tree i in year t) and yit = 0

(no damage), i = 1, . . . , 84, t = 1983, . . . , 2001. Figure 4 and 5 show the

temporal development of the frequency of damaged trees and the spatial

distribution of trees together with the percentage of damage, averaged

over the entire observation period.

Our analysis is based on the following covariates:

A age of the tree in years,

C canopy density at the stand, measured in steps of 10%,

t calendar time in years,

S site of the tree.

We model the probability P(yit = 1) (tree i is damaged in year t) through

the following logit model

log
P(yit = 1)
P(yit = 0)

= γ0 + f1(t) + f2(Ait) + f3(Cit) + f4(Si),

where the functions f1,f2 and f3 are modelled through cubic P-splines with

second order random walk penalty, and the spatial component f4 follows a

Markov random field prior. A pair of trees is considered as neighbours if

their distance is less than 1.2 km.

Effect of calendar time
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Figure 6: Estimated effect of calendar time with pointwise 95% credible

intervals.

Effect of age in years
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Figure 7: Estimated effect of the age of the trees with pointwise 95%

credible intervals.

Effect of canopy density
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Figure 8: Estimated effect of the canopy density with pointwise 95%

credible intervals.

Figures 6 to 8 display the estimated functions f̂1, f̂2 and f̂3. The estimates

f̂1 and f̂2 are clearly nonlinear, while the effect of the canopy density seems

to be linearly decreasing, leading to a possible model simplification. The

shape of the confidence intervals in Figure 8 is caused by the centering of

f3 and the very small variance τ2
3 that is estimated for f3 (τ̂2

3 ≈ 4 · 10−7).

This leads to an almost linear function with a predetermined value of

f3(C̄), where C̄ is the mean canopy density.

The estimated effect f̂1 of calendar time reflects the descriptive trend from

Figure 4 with a peak in the mid-eighties, recovering thereafter and staying

on a more or less constant level in the nineties. Astonishingly, the nonlinear

effect of age is not monotone, with a first peak around 65 years.
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Figure 9: Estimated spatial effect

The estimated spatial effect is given in Figure 9. It reflects the raw spatial

effect shown in Figure 5 but also illuminates a spatial pattern with increased

damage state around the village of Rothenbuch.

ŷit

yit 0 1

0 900 71

1 113 465

ŷit

yit 0 1

0 846 125

1 207 371

Table 1: Classification table with and without spatial effect

In Table 1 we compare the classification of trees for all years based on

the spatio-temporal logit model and, alternatively, on a model without

the spatial component f4. The classification table of the spatio-temporal

model shows a clear improvement, confirming that inclusion of the spatial

information is substantial. This is also reflected in the misclassification rates

11.9% (with spatial component) and 21.4% (without spatial component).

Software

The presented mixed model approach is implemented in GGAMM, a

software package that includes several Splus-/R-functions. The program

allows the estimation of nonlinear effects of metrical covariates (modelled

as P-splines), structured effects of spatial covariates (modelled as Markov

random fields) and uncorrelated random effects (random intercepts and

random slopes) for Gaussian, gamma, Poisson and Binomial distributed

response. GGAMM is available from

www.stat.uni-muenchen.de/ kneib

Fully Bayesian analyses have been carried out with BayesX, a software for

Bayesian inference based on MCMC techniques. BayesX is available from

www.stat.uni-muenchen.de/ lang

References
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