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Abstract

The presence of multimodal sensors on current mobile phones enables a broad range of novel mobile
applications. Environmental and user-centric sensor data of unprecedented quantity and quality can be
captured and reported by a possible user base of billions of mobile phone subscribers worldwide. The
strong focus on the collection of detailed sensor data may however compromise user privacy in various
regards, e.g., by tracking a user’s current location. In this survey, we identify the sensing modalities
used in current participatory sensing applications, and assess the threats to user privacy when personal
information is sensed and disclosed. We outline how privacy aspects are addressed in existing sensing
applications, and determine the adequacy of the solutions under real-world conditions. Finally, we
present countermeasures from related research fields, and discuss their applicability in participatory
sensing scenarios. Based on our findings, we identify open issues and outline possible solutions to
guarantee user privacy in participatory sensing.

1 Introduction

In recent times, mobile phones have been riding the wave of Moore’s Law with rapid improvements in
processing power, embedded sensors, storage capacities and network data rates. The mobile phones of
today have evolved from merely being phones to full-fledged computing, sensing, and communication
devices. It is thus hardly surprising that over 5 billion people globally have access to mobile phones.
These advances in mobile phone technology coupled with their ubiquity have paved the way for an
exciting new paradigm for accomplishing large-scale sensing, known in literature as participatory sens-
ing [1, 2]. The key idea behind participatory sensing is to empower ordinary citizens to collect and share
sensed data from their surrounding environments using their mobile phones.

Mobile phones, though not built specifically for sensing, can in fact readily function as sophisticated
sensors. The cameras on mobile phones can be used as video and image sensors. The microphone on
the mobile phone, when it is not used for voice conversations, can double up as an acoustic sensor.
The embedded GPS receivers on the phone can provide location information. Other embedded sensors
such as gyroscopes, accelerometers,and proximity sensors can collectively be used to estimate useful
contextual information (e.g., if the is user walking or traveling on a bicycle). Further, additional sensors
can be easily interfaced with the phone via Bluetooth or wired connections, e.g., air pollution or biometric
sensors.

Participatory sensing1 offers a number of advantages over traditional sensor networks which entails
deploying a large number of static wireless sensor devices, particularly in urban areas. First, since
participatory sensing leverages existing sensing (mobile phones) and communication (cellular or WiFi)
infrastructure, the deployment costs are virtually zero. Second, the inherent mobility of the phone carri-
ers provides unprecedented spatiotemporal coverage and also makes it possible to observe unpredictable
events (which may be excluded by static deployments). Third, using mobile phones as sensors intrinsi-
cally affords economies of scale. Fourth, the widespread availability of software development tools for
mobile phone platforms and established distribution channels in the form of App stores makes applica-
tion development and deployment relatively easy. Finally, by including people in the sensing loop, it is
now possible to design applications that can dramatically improve the day-to-day lives of individuals and
communities.

A plethora of novel and exciting participatory sensing applications have emerged in recent years.
CarTel [7] is a system that uses mobile phones carried in vehicles to collect information about traffic,

1 Without loss of generality, we use the generic term participatory sensing to designate applications using mobile phones
as sensors (or as data sink for interfaced sensors) where participants voluntarily contribute sensor data for their own
benefit and/or the benefit of the community. The notion of participatory sensing therefore includes mobiscopes [3]
and opportunistic sensing [2], and also covers specific terminologies focusing on particular monitoring subjects, such
as urban sensing [2], participatory urbanism [4], citizen sensing [1], people-centric sensing [2, 5], and community
sensing [6].



quality of en-route WiFi access points, and potholes on the road. Micro-Blog [8] is an architecture which
allows users to share multimedia blogs enhanced with inputs from other physical sensors of the mobile
phone. Other applications of participatory sensing include the collection and sharing of information
about urban air [4] and noise pollution [9], cyclist experiences [10], diets [11], or consumer pricing
information in offline markets [12].

A typical participatory sensing application operates in a centralized fashion, i.e., the sensor data col-
lected by the phones of volunteers are reported (using wireless data communications) to a central server
for processing, as illustrated in Fig. 1. The sensing tasks on the phones can be triggered manually, au-
tomatically, or based on the current context. On the server, the data are analyzed and made available
in various forms, such as graphical representations or maps showing the sensing results at individual
and/or community scale. Simultaneously, the results may be displayed locally on the carriers’ mobile
phones or accessed by the larger public through web-portals depending on the application needs.

Application server

End user

Participant
Mobile phones

• GPS
• Camera
• Microphone
•Accelerometers

• Camera
• Microphone
• Peripheral
pollution and
biometric sensors

Participants
Visualization

Figure 1: Architectural overview of a typical participatory sensing application

Current participatory sensing applications are primarily focused on the collection of data on a large
scale. Without any suitable protection mechanism however, the mobile phones are transformed into
miniature spies, possibly revealing private information about their owners. Possible intrusions into a
user’s privacy include the recording of intimate discussions, taking photographs of private scenes, or
tracing a user’s path and monitoring the locations he has visited. Users are reluctant to contribute to the
sensing campaigns, once they are aware of possible consequences. Since participatory sensing exclusively
depends on user-provided data, a high number of participants is required. The users’ reluctance to
contribute would diminish the impact and relevance of sensing campaigns deployed at large scale, as well
as limiting the benefits to the users. To encounter the risk that a user’s privacy might be compromised,
mechanisms to preserve user privacy are mandatory.

Within the scope of this manuscript, we analyze the current state-of-the-art in privacy-preserving mech-
anisms applied in participatory sensing campaigns. Besides describing the solutions currently applied to
address user privacy, we also highlight and discuss open issues and their impact on privacy. Our contri-
butions can be summarized as follows:

• We analyze existing participatory sensing applications to identify the different modalities of sen-
sor data contributed by users. We also investigate the extent of personal information that can
be inferred by examining the uploaded data either in isolation, or by combining different sensor
modalities.

• We define the notion of privacy in participatory sensing and we highlight threats to privacy resulting
from the disclosure of this data to untrusted parties.

• We examine how the current state-of-the-art protects the privacy of the participants by conducting
a cross-analysis of the existing countermeasures and the architectural elements present in typical



sensing applications.

• Based on this analysis, we identify and discuss future research directions that need to be addressed
to prevent privacy from being the limiting factor for user participation in sensing campaigns.

We present these contributions as follows: In Section 2, we provide an overview of various partici-
patory sensing applications with a particular focus on the different kinds of sensor data that are being
collected. We examine the resulting implications on revealing personal information in Section 3. Subse-
quently, we analyze existing privacy-preserving countermeasures in Section 4. In Section 5, we highlight
and discuss future research directions before concluding the paper in Section 6.

2 Participatory Sensing Applications and System Model

The emergence of the participatory sensing paradigm has resulted in a broad range of novel sensing
applications, which can be categorized as either people-centric or environment-centric sensing. People-
centric applications mainly focus on documenting activities (e.g., sport experiences) and understanding
the behavior (e.g., eating disorders) of individuals. In contrast, environment-centric sensing applications
collect environmental parameters (e.g., air quality or noise pollution). As many of the applications make
use of the same sensing modalities, we confine our discussion to a selection of representative applica-
tions and illustrate the varied usage models of participatory sensing in this article. After presenting an
overview of more than 30 illustrative applications, we derive a general system model and examine the
different sensing modalities of each application.

2.1 People-centric Sensing Applications

People-centric sensing uses the sensor devices integrated in mobile phones to collect data about the user.
We discuss a representative selection of existing people-centric participatory sensing applications and
analyze the sensing modalities used.

2.1.1 Personal Health Monitoring

In personal health monitoring, mobile phones are used to monitor the physiological state and health of
patients/participants using embedded or external sensors (e.g., wearable accelerometers, or air pollution
sensors). For example, DietSense [11] assists participants who want to lose weight by documenting
their dietary choices through images and sound samples. The mobile phones are worn on necklaces and
automatically take images of the dishes in front of the users. The images document the participants’
food selection and allow for an estimation of the food weight and waste on the plates. Moreover, the
mobile phones capture the participants’ context during their meals by recording time of day, location, and
sound samples to infer potential relationships between the participants’ behavior and their context (e.g.,
having lunch in a restaurant or eating chips late at night on the sofa). All captured data are uploaded
to a personal repository, where the participants can review them to select/discard the information to be
shared with their doctors and nutritionists.

A system to monitor pediatric obesity through multimodal activity detection is presented in [13].
The system is based on a heterogeneous wireless body-area network which employs sensors for heart
frequency, acceleration, electrocardiography, blood oxygen saturation, and the user’s galvanic skin re-
sponse. All sensor data are tagged with location information, and optionally with audio and video tags.
Adult obesity often results from an imbalance between calorie intake and calorie expenditure. The BAL-
ANCE system [14] combines an intuitive entry form for calorie intake with a body-area sensor which
caters for activity classification. The system relies on the analysis of acceleration patterns to classify the
participants’ activities, e.g., sitting, running, walking, or bicycling. By correlating activity types and their
corresponding durations, the users’ calorie expenditures are estimated. Activity and calorie monitoring
is also combined in the Jog Falls project [15], which is based on the combination of body-area sensors



(acceleration and heart rate) with a simple interface for entering calorie intake. Both functionalities are
integrated within a mobile phone application. Complemented by separate blood pressure and weight
measurements, participants and their nutritionists are notified of the overall achievements with regard
to their diet and targeted weight loss.

The HealthSense project [16] targets the automated detection of health-related events that cannot
be directly observed by current sensor technology, like tow conditions, pain, or depression. Acceleration
data is being used in conjunction with machine learning approaches to detect correlations, e.g., diagnose
itching as the source for a user’s scratching motions. MobAsthma [17] monitors the asthma condition of
the patients and their exposure to pollution. A peak flow meter and a pollution sensor are interfaced to
the mobile phone via a Bluetooth connection, and measure both the volume of air inhaled and expired
by the patients as well as the airborne particle concentration. These measurements are coupled with the
patients’ location and made available to allergists and asthma specialists to investigate the personal re-
lationships between asthma attacks and exposure to air pollution. In addition to investigation purposes,
MobAsthma can detect asthma attacks in early stages and autonomously alert remote medical staff.

Mobile phones can also be applied to remotely monitor the activity and posture of patients (e.g., elderly
people living alone) using peripheral or the embedded accelerometers [18]. For example, medical staff
can gather the physical condition of elderly people by analyzing the temporal repartition of their postures
among, e.g., sitting, standing, or lying. The granularity and accuracy of the activity recognition depend
on the amount and position of the accelerometers (worn, e.g., on the hip, or in front/back pockets).
Similarly to MobAsthma, medical staff may be directly alerted via the mobile phones in case of abnormal
behavior or when users fall with SenSay [19].

2.1.2 Calculating Environmental Impact and Exposure to Particles

PEIR (Personal Environmental Impact Report) is a system that allows users to use their mobile phone
to determine their exposure to environmental pollutants [20]. A sensing module installed on the phone
determines the current location of the user as well as information about the currently used mode of
transportation (e.g., bus vs. car), and transfers this information to a central server. In return, the server
provides the users with information about the environmental impact of their traveling in terms of carbon
and particle emissions. Additionally, the server estimates the participants’ exposure to particle emissions
generated by other vehicles and to fast food restaurants while commuting. The latter may be useful
for health conscious users who may want to avoid the temptation of stopping by such restaurants. The
mode of transport is inferred using accelerometer readings, while the route travelled is extracted from
the captured location traces. Additional input parameters and models are considered for determining
the environmental factors, such as weather conditions collected by weather stations, road traffic flow
models, and vehicle emission models.

2.1.3 Monitoring and Documenting Sport Experiences

The BikeNet [10, 21], Biketastic [22], and SkiScape [23, 24] projects monitor the sport experiences of
the participants. Both BikeNet and Biketastic document the bicycling experiences of the participants.
BikeNet draws a fine-grained portrait of the cyclist by measuring his current location, speed, burnt
calories, and galvanic skin response. Multiple peripheral sensors are used to obtain this information:
Microphone, magnetometer, pedal speed sensor, inclinometer, lateral tilt, stress monitor, speedome-
ter/odometer, and a sensor for CO2 concentration. The peripheral sensors form a body area network
and interact with the mobile phone over a wireless connection. In comparison, Biketastic concentrates
on the road conditions, including the roughness of the road and the noise level along the road captured
by on-board accelerometers and microphone, respectively. The captured data can be reviewed by the
cyclists themselves, but can also be merged with other participants’ data or combined with additional
parameters, such as air quality and traffic properties, in order to construct complete maps for the cycling
community.



In contrast, SkiScape focuses on winter sports and is deployed in ski resorts. Peripheral sensors (tem-
perature sensor, accelerometers, and microphone) are attached either on skis or personal equipment
to measure the body temperature, the maximum acceleration, and the travelled distance. Besides the
sensors bound to the user, several static nodes are located along the trail and cater for the localization
of the user within the ski resort. Using SkiScape, the participants can document their traces, locate their
friends, and select lifts depending on the queue length. Simultaneously, the manager can optimize the
maintenance operations, and emergency staff can easily localize participants in case of accidents.

2.1.4 Enhancing Social Media

A large pool of applications utilizes data captured by sensors to enrich the contents shared in social
media, such as blogs, social networks, or virtual worlds. Micro-Blog [8] proposes to build a “virtual
information telescope”, which provides a high-resolution view of the world by leveraging the mobile
phones serving as lenses. The participants can create geotagged blog entries and enhance them with
multimedia information (e.g., audio records, pictures, accelerometer data, or WiFi coverage) captured
via their mobile phones. The created entries are then uploaded to a server, which may position them at
their capture location on a global map accessible by the public. Users can browse the entries displayed
on the map to find information about particular points of interests (e.g., audio reviews about restaurants,
pictures of the nearest beaches). If the information required is not contained in existing entries, the users
can send queries (e.g., “how is the WiFi coverage near this beach?”) to the server, which relays them to
mobile phones currently located in this area.

Similarly, CenceMe [25, 26] integrates virtual representations of the participants’ current state and
context in social networks and virtual worlds. Based on multimodal information (acceleration, audio
samples, pictures, neighboring devices, and location) captured by the mobile phone, context information
is inferred in various dimensions, including the user’s mood, location, and habits, as well as information
about the currently performed activity and the environment. The inferred information is then posted as
status message in social networks or translated into the virtual representation of participants in virtual
worlds.

2.1.5 Price Auditing

LiveCompare [27] and PetrolWatch [12] facilitate price comparisons of grocery products and fuel at
different locations. Instead of manually reporting the prices, the participants use their mobile phones to
take pictures of the displayed prices. In LiveCompare, the participants only need to take pictures of a
product’s price tag and its barcode. The barcode is decoded into a textual representation on the mobile
phone, and transferred to the server along with capture time, location information, and the picture
displaying the current price. To compare prices, participants can search for products in the application,
which then retrieves the corresponding price reports, selects the stores in proximity of the participant’s
current location and displays the pictures of the corresponding price tags.

In comparison, the price collection process is not only simplified in PetrolWatch, but also automated.
Each mobile phone is mounted on the passenger seat of a car and faces the road to automatically photo-
graph fuel price boards (using GPS and GIS) when the vehicle approaches service stations. The pictures
are then uploaded to a central entity, which is responsible for image processing and price extraction.
The brand of the service station is first inferred from the capture location in order to reduce the image
processing complexity, as price boards of different brands differ in colors and dimensions. Assisted by
this information, computer vision algorithms extract the fuel prices, and uploads them to the database.
Users can query the system to determine the cheapest fuel that is available in their area of interest.



2.2 Environment-Centric Sensing Applications

In environment-centric scenarios, the mobile phones capture information via their embedded sensors
and additional peripheral sensors about the surroundings of the participants. In contrast to most people-
centric sensing scenarios, the captured data are mainly exploited at a community scale, e.g., to monitor
the evolution of environmental parameters like air quality, thermal columns, noise, road and traffic
conditions in cities, or to detect socially interesting events.

2.2.1 Air Quality Monitoring

In Haze Watch [28], mobile phones were interfaced to external pollution sensors, in order to measure
the concentration of carbon monoxide, ozone, sulphur dioxide, and nitrogen dioxide concentration in
the air. In comparison to meteorological stations, the mobile phones may collect less accurate measure-
ments. However, their inherent mobility allows them to observe unpredictable events (e.g., accidental
pollution), which can seldom be detected by static stations and provide large spatial coverage. The mo-
bile phones can thus complement static high-fidelity data captured by traditional meteorological stations
by providing finer-grained readings. In addition to pollution measurements, the mobile phones can cap-
ture temperature and wind speed, such as shown in PollutionSpy [17] and by [4]. The timestamped and
geotagged measurements are then uploaded to a server to build maps, which aggregate the readings
of all participants and are accessible by the public. Individual measurements may also be displayed on
the participant’s mobile phone. Despite a common interest in air pollution, this application scenario and
the related applications differ from the PEIR project presented in Sec. 2.1.2, as the pollutant concentra-
tions are actually sensed with real sensors carried by the participants and not inferred based on weather
conditions, traffic condition, and emission models.

2.2.2 Monitoring Thermal Columns

Ikarus is a participatory sensing application for paraglider pilots [29]. It collects information about
thermal columns, which are used by pilots to gain in altitude during their flights. Ikarus is based on
the collection of barometric pressure information, annotated with the time and location of sampling.
Thermal maps are then extracted from the contributed sensor data, and processed for visualization on
web-based maps and distribution on other pilots’ navigation units.

2.2.3 Monitoring Noise and Ambiance

Microphones in mobile phones can be configured to measure the surrounding noise level and give in-
sights about the nature of contextual events. In NoiseTube [30], Ear-Phone [9], and NoiseSpy [17],
noise levels are used to monitor noise pollution, which can, e.g., affect human hearing and behavior.
The data are then used to build representative pollution maps to enable specialists to understand the
relationships between noise exposition and behavioral problems.

In addition to noise level, the sound samples can be further analyzed to determine, e.g., whether
human voices were recorded in order to recognize the sound context in SoundSense [31]. Depending
on the recognized context, the corresponding sound samples may be used to document audio diaries or
indicate places where music is currently played to other participants in online social networks.

Furthermore, in MoVi [32], the mobile phones collectively sense the surrounding ambiance to detect
precursor signs (e.g., outburst of laughter, moves in the same directions) of relevant social events (e.g.,
speeches) and trigger a video recording of the upcoming events in case of positive detection. The record-
ings collected by different mobile phones can then be timely and automatically assembled in a common
video clip, which may potentially reduce cumbersome manual video edition. As the video recordings
are automatically triggered, the participants can focus on the events instead of having to focus on taking
recordings.



MetroTrack [33] is used to track mobile noise sources in outdoor environments. Similar to the afore-
mentioned approaches, mobile phones are carried by participants are being used as mobile noise sen-
sors. Collaboration between neighboring mobile phones is used to estimate the future trajectory of a
noise source through the application of distributed Kalman filtering. The tracking task is automatically
forwarded to nodes in proximity to the estimated trajectory to ensure accurate detection of the mobile
noise source.

2.2.4 Monitoring Road and Traffic Conditions

The mobile phones can be exploited to document road and traffic conditions. In Nericell [34], the
embedded accelerometer, microphone, and positioning system (GPS or GSM radio) are used to detect
and localize traffic conditions and road conditions, e.g., potholes, bumps, or braking and honking (which
are both implicit indicators of traffic congestion). The application integrates the provided information
about the surface roughness of the roads, the surrounding noise, and the traffic conditions into traffic
maps, which are available to the public. In addition to parameters related to a cyclist’s activity and his
physical condition, the BikeNet project (cf. Section 2.1.3) measures environmental parameters such as
pollution, noise levels and irregularity of the roads. Hence, this project can be regarded as a hybrid
application, combining components from both people-centric and environment-centric sensing.

Current solutions for automotive traffic monitoring, such as inductive loops, are usually expensive in
deployment and maintenance costs, and often prone to errors. The concept of Virtual Trip Lines [35]
targets to replace these conventional monitoring solutions by smartphones mounted within vehicles.
Instead of deploying costly monitoring infrastructure, the locations of street segments of interest are
modeled as virtual trip lines and forwarded to the participants’ smartphones. A phone application
constantly monitors its current location, and transmits its position and travelling speed to the traffic
monitoring infrastructure whenever a virtual trip line has been crossed. A similar approach for traffic
monitoring is based on the use of multiple positioning sensors (GPS, WiFi, and cellular radios) in [36].
The VTrack system relies on mobile devices which deliver timestamped location estimates to a server, in
order to estimate driving times on different road segments at a fine spatio-temporal granularity. Based on
the availability of traffic information, roads with unusually high travel times are identified, and real-time
information about these traffic hotspots is then used for route planning. An extension to the approach
is presented in [37], where the concept of cooperative transit tracking is presented. The lack of public
information about the timeliness of public transportation is encountered by a participatory approach to
report the current location of transit vehicles by the users on board. A background task on smartphones
automatically detects if the user has entered a transit vehicle, both above ground and underground, and
uploads its current location coordinates to the tracking server.

Although the CarTel [7] and GreenGPS [38] projects utilize dedicated sensing devices with more
resources than current mobile phones, both rely on contributions by participants and can thus be con-
sidered as implementations of participatory sensing. GreenGPS targets to provide a map of the least
fuel-consuming routes to drivers. The fuel consumption is measured via specific sensors accessing the
gauges and instrumentation of the vehicles, and is correlated with location information from an external
positioning system. The sensor readings are stored on a memory card and are manually uploaded to the
application by the participants themselves. The obtained results have shown that high speed and long
distance routes do not necessarily reduce the fuel consumption. Using an embedded computer coupled
with sensors, CarTel analyzes the time it takes a participant to commute to work, determines traffic
congestion, and represents jammed roads on a map. Additionally, driving patterns and readings from
automotive on-board diagnosis systems can be taken into account.

2.3 System Model

From the analysis of the previous people-centric and environment-centric sensing applications, we de-
rive the following general system model including stakeholders and architectural components. Fig. 2
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Figure 2: Stakeholders and architectural components of participatory sensing applications

summarizes the resulting model and the interactions between its elements.

2.3.1 Stakeholders

In the above applications, we identify the following stakeholders:

• Campaign administrators: They are members of organization, research groups or individuals who
initiate the participatory sensing campaigns. They design, implement, and deploy the system ar-
chitecture and are responsible for the maintenance and the management of the infrastructures. For
example, this includes making available the application for download on the campaigns’ websites
or in App Stores and setting up the application server to collect and process the data.

• Participants: They install the sensing application on their mobile devices and voluntarily contribute
to the participatory sensing campaigns by gathering sensor readings using the mobile phones they
own and carry. Besides being driven by the motivation to benefit from the data provided by them-
selves and other participants, their contributions to the campaigns can be motivated by different
factors primarily influenced by the nature of the campaign. At an individual scale, they may be
willing to, e.g., improve their health conditions, monitor their impact on the environment, or doc-
ument their sport experiences. While at a community scale, they may aim at monitoring pollution
and thermal columns to help scientists to understand the monitored phenomena, or helping other
users by providing information about road and traffic conditions. Consequently, their motivations
can be either self-centered (e.g., in Jog Falls), altruistic (such as in PollutionSpy), or a combination
of both (e.g., in Ikarus). Note that the degree of involvement of the participants in the sensing
process depends on the application characteristics, as discussed in detail in Section 2.3.2.

• End users: They access and consult the data gathered by the participants according to their in-
terests and preferences. End users include, e.g., contributing participants willing to consult their



own collected data, campaign administrators verifying the actual contributions and results, special-
ized scientists attempting to gain insights about the monitored phenomena, participants’ relatives
consulting the last reports to encourage the concerned participants, health professionals checking
patient data, or the general public.

2.3.2 Architecture

In Fig. 2, we identify typical architectural components common to the existing participatory sensing
architectures and determine their function in the general system model. The components are generally
organized into a client-server architecture and interact from the sensing process to the presentation of
the results to the end users.

• Sensing component: It is located on the participants’ mobile phones and captures different kinds
of sensor data, prevalently time, location, pictures, sound samples, accelerometer data, pollution
data, biometric data, and barometric pressure. We summarize the sensing modalities used in the
presented applications in Table 1.

The sensor data can be captured according to one of the following sensing modes: Manual, au-
tomatic, and context-aware [39]. In the manual mode, the participants trigger the collection of
sensor readings themselves when they detect relevant events, such as noise pollution or traffic
congestion. This mode is also referred as participatory sensing in the literature [1], as the partici-
pants directly participate in the sensing process. On the contrary, the participants are not directly
involved in the automatic and context-aware modes. In the automatic mode (also known as contin-
uous mode [10]), the sensor readings are collected at a constant sampling frequency, while their
collection depends on the surrounding environment in the context-aware mode (also known as
opportunistic sensing [2]), where the embedded sensors monitor their environment and activate
the sensing function when previously set thresholds are exceeded.

• The tasking component supports the above sensing component by distributing the sensing tasks to
the mobile phones. These tasks specify the sensing modalities based on the application require-
ments including criteria to fulfill to start the capture, sensors used and sampling frequency. One
example of such requirements could be phones equipped with GPS and with embedded cameras
that can capture 3 megapixel images. The tasks also contain information about location and/or
time frame of interest

• The reporting component ensures the transmission of the sensor readings collected by the sensing
component to the application server. The data transfers mostly make use of communication infras-
tructure available to the mobile phone, such as Wireless LAN, or GSM/GPRS/3G connectivity. For
example, the sensor readings can be transmitted to the server using SMS, TCP connections [8], or
remote procedure calls [25].

• The storage component ensures the storage of the collected data on the mobile phone and the
reported data on the server. While the server manages long-term storage of the reported data, the
mobile phone ensures short-term storage of the data to be processed or transmitted to the server.
On the server side, the data are commonly stored in relational databases [8, 7, 40] or databases
specially adapted to the management of sensor readings, e.g., sensedDB [41] and SensorBase [42].

• The processing component extracts features of interest from the sensor readings either directly on
the mobile phones at individual scale or on the server side at larger scale. The component analyzes
the data reported to the server and prepares them for the presentation component.

• The presentation component presents the results obtained by the processing components to the
end users. The results are either locally display on the mobile phones for the participants only or
presented through web-portals to a larger public. The results are presented in forms of raw data



Table 1: Comparison of applications and sensing modalities
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DietSense x x x x
Pediatric obesity x x x x x
BALANCE x x x x
Jog Falls x x x x
HealthSense x x
MobAsthma x x x x
SenSay x x x

Personal impact PEIR x x

Sport experiences
BikeNet x x x x x x
Biketastic x x x x
SkiScape x x x x

Social media
Micro-Blog x x x x x x
CenceMe x x x x x

Price auditing
LiveCompare x x x
PetrolWatch x x
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Air pollution
Haze Watch x x x
PollutionSpy x x x
Paulos et al. x x x

Thermal columns Ikarus x x x x

Noise and ambiance

NoiseTube x x x
Ear-Phone x x x
NoiseSpy x x x
SoundSense x x x
MoVi x x x x
MetroTrack x x x

Road conditions

Nericell x x x x
Virtual Trip Lines x x
VTrack x x
Transit tracking x x x
CarTel x x x x x
GreenGPS x x

to allow the end users to analyze them themselves, or in forms of graphs, maps, and geographic
overlays [7].

3 Privacy and Threats in Participatory Sensing

As we have illustrated in Table 1, virtually all participatory sensing systems collect sensor readings re-
lated to the participants and/or their environments. Obviously, the collected data may be used to extract
or infer sensitive information about a user’s “private life, habits, act and relations” – the basic defini-
tion of privacy by [43]. Simultaneously, contributed sensor data are vital to any participatory sensing
application, and their deficiency endangers the success of participatory sensing systems. Campaign ad-
ministrators therefore need to increase the user awareness of the consequences of the disclosure of
sensor data as well as provide solutions to maintain user privacy in order to ensure the durability of the
campaign and prevent participants from opting out.

In this section, we thus discuss the notion of privacy in participatory sensing systems. We first address
the lack of a common understanding of privacy [44] by introducing our definition of privacy, specially



tailored to the specifics of participatory sensing systems. We then conduct a privacy analysis to determine
actors and processes that represent threats to the privacy of the participants, before highlighting possible
consequences resulting from the disclosure of sensitive information.

3.1 Privacy Definition

With the rise of communication equipment and computing systems, the notion of information privacy has
emerged, which has been initially defined as “the claim of individuals [. . . ] to determine for themselves
when, how and to what extent information about them is communicated to others” by [45]. Although
the field of privacy is multifaceted and comprises several other dimensions [46], user-level control over
sensitive sensor data represents the major concern in participatory sensing systems. In consequence, we
refer to information privacy whenever the term privacy is being used in this article.

In order to cater for the specific characteristics of participatory sensing systems, we propose an adapted
version of the above definition of information privacy, which we apply throughout the remainder of this
article:

Privacy in participatory sensing is the guarantee that participants maintain control over the
release of their sensitive information. This includes the protection of information that can be
inferred from both the sensor readings themselves as well as from the interaction of the users
with the participatory sensing system.

Our definition implies that participants continuously need to control the release of their sensor read-
ings to third parties (including the participatory sensing application) and have full control over the
provided type of sensor readings, the degree of granularity, the spatiotemporal context, and the data
recipients. Participants are therefore actively involved in pursuing the protection of their privacy. How-
ever, their actions should ideally be supported by the system with usable and understandable mecha-
nisms [47]. In addition to the direct protection of the sensor readings, the proposed definition includes
the protection of the participants against the inference of sensitive information resulting from their in-
teractions with the participatory sensing system. This implies that potential adversaries are unable to
determine the spatiotemporal information about the participants, when they download tasks or report
data to the application, or link their real identity with the pseudonyms they use. From this perspective,
the participants are not actively involved in the privacy decisions, but the participatory sensing system is
responsible for their privacy protection.

3.2 Privacy Analysis

To further understand the privacy concerns in participatory sensing, we analyze participatory systems
from a privacy perspective. We base our analysis on the theory of contextual integrity [48], which
comprises the dimensions of appropriateness and distribution. Appropriateness defines if the revelation
of a particular piece of information is appropriate in a given context, while distribution focuses on the
occurrence of an information transfer from one party to another. The concept of contextual integrity
defines breaches of appropriateness or distribution as violations to a user’s privacy.

Socio-cultural and contextual differences have a strong impact on the individual perception of data
sensitivity. For example, users make different privacy decisions depending on the number of recipients
of their data [49]. While it has been shown that users pragmatically determine whether they share
their locations with a single person, additional parameters like their willingness to attract attention or
boost their self-presentation are taken into account when they decide about sharing their whereabouts
with a larger group of people. In consequence, the appropriateness entirely depends on the individual
privacy conception of each participant. We thus discuss this dimension at a high level and confine
our privacy analysis to a thorough examination of distribution aspects for the stakeholders present in
typical participatory sensing applications. In all cases, we assume that the analyzed participatory sensing



systems collect sensor readings including pictures, sound samples, acceleration, pollution data, biometric
data, and barometric pressure (see Table 1), which are tagged with spatiotemporal information.

• Who gathers the sensor readings? The sensor readings initially collected by the participants are
reported to the application server, which is run by the campaign administrators. The adminis-
trators therefore have a direct access and control over the collected sensor readings. While the
distribution of the sensor readings to the campaign administrators is part of participatory sens-
ing systems and the participants are aware of this fact, the reported sensor readings may reveal
sensitive information about the participants, if no privacy-preserving processing is locally applied
on the mobile phones. The participants are the only ones able to judge the appropriateness of
the revealed information, as it depends on their personal privacy conception as well as the nature
and the context of the revealed information. However, the participants may encounter difficulty in
translating their own conception of privacy into, e.g. privacy settings, and to understand the im-
plications of their settings and actions on their privacy [50]. For example, users are often unaware
of the technical details of the underlying architecture. They may underestimate the risks related
to their privacy [51], and pay little attention to policies and end user licensing agreement, both
of which are often laid out in technical terms and thus hard to understand [52]. In summary, a
combination of the inconsistent behavior of the participants and the lack of existing solutions to
clarify privacy implications may more often than not lead to sub-optimal privacy protection. To
improve on the current state-of-the-art, we propose further research in this direction in Section 5.

• Who analyzes the sensor readings? The sensor readings are analyzed after having been reported to
the servers. The campaign administrators determine and implement the processing to apply on the
sensor readings to prepare them for analysis. Particular privacy-aware functions can be applied to
anonymize the participants and/or remove sensitive information about them before their release
to the analysts. However, the sensor readings can still contain private information about the partic-
ipants. After this preparation processing, the sensor readings can be analyzed by different groups
of people depending on the application scenario. These include the participants themselves, the
campaign administrators, doctors, researchers in the field, etc. The participants maintain different
relationships with the groups of analysts that directly impact the appropriateness. For example, it
is considered as appropriate for participants to share personal information related to their health
conditions with their doctors [48], whereas sharing the same information with a different analyst,
such as a campaign administrator, may be inappropriate. By reporting their sensor readings to the
application, the participants are aware that they can be analyzed by the application (i.e., the cam-
paign administrators. However, they may ignore that the distribution of their sensor readings can
be extended to external analysts potentially unknown to them, endangering the appropriateness.

• Who accesses the analyzed sensor readings? The analyzed sensor readings are released by the
campaign administrators to the end users. The access to the sensor readings is determined by access
control rules defined by either the participants themselves or the campaign type. The authorized
persons can be restricted to only the participants themselves or extended to their relatives, friends,
or a larger public, depending on the application. In the worst case, the circle of authorized persons
is thus enlarged from the campaign administrators and related analysts to the general public,
raising the issue of appropriateness to its climax. The level of appropriateness can be moderated
by proposing different degree of granularities at which the data are released depending on the
nature of the relationships between the participants and the end users. However, the distribution
of the sensor readings is ensured by the campaign administrators. The participants must thus trust
them not to disclose sensitive information about themselves to untrusted parties.

In summary, the respect of the privacy of the participants therefore primarily depends on the campaign
administrators who have direct access to the reported sensor readings and ensure their distribution to
potential analysts and end users. Malicious campaign administrators or inefficient mechanisms to both



remove private information from the sensor readings and control their access can thus contribute to the
violation of the privacy of the participants.

3.3 Privacy Threats

Let us assume that a worst case scenario where campaign administrators break the trusted relation-
ship to the participants and reveal sensitive information about them. We examine the potential social
consequences of such disclosure by successively considering the sensing modalities listed in Table 1:

• Time and location: It is evident by examining the table that virtually all applications (except for Jog
Falls, HealthSense, and BALANCE) collect time and location information independently of their
people-centric or environmental-centric nature, thus underpinning the importance of these two
contextual factors. GPS receivers embedded in most current smartphones provide very accurate
location coordinates. However, in the absence of GPS (due to lack of coverage or if the user does
not want to reveal fine-grained location information), WiFi or cellular network based triangulation
can be used to obtain coarse-grained location information [53]. Contextual information collected
from other embedded sensors (such as points of interest [54], light, and noise) can also be used to
identify a person’s location.

Given their importance, the disclosure of data from these two modalities has been shown to leak
privacy-sensitive information about the participants, including their home and workplace locations,
as well as their routines and habits [22]. For example, frequent visits to hospitals may allow
employers to infer the medical condition of their employees, and similarly, attendance at political
events may provide information about the political views of users [55]. In summary, without any
protection mechanism, the disclosure of location information may lead to severe consequences
ranging from social to safety and security threats [22]. Additionally, the threats resulting from
location/time traces are not confined to applications where authentication is required. Even in
the case of anonymous contributions, location traces may be analyzed to infer the identity of the
participants based on their residence location and reverse white page lookups [20].

• Sound samples: Besides inferring identities and preferences from spatiotemporal data only, the
portrait of the user can be refined by complementing this data by samples of other sensing modali-
ties. In several of the aforementioned applications, sound samples are either recorded intentionally
by the participants, or captured automatically by the mobile phones. While participants can easily
preserve their privacy by only recording non-sensitive events in the former case, mobile phones
effectively behave as smart spies in the case of automated recordings. Dedicated user interaction is
required to prevent the applications from recording private conversations about intimate or confi-
dential subjects. Even in public locations, the recognition of characteristic sound patterns that are
unique to certain events and locations may allow adversaries to determine a participant’s current
context.

• Pictures and videos: The content of contributed pictures and recorded videos is also likely to re-
veal personal information about the participants and their environment. Although DietSense [11]
targets to take photos of consumed meals, no countermeasures are taken to conceal the faces of
persons sharing their meal with the participants. In all scenarios, in which the camera is oriented
away from the participant, faces of other people in the vicinity are possibly captured in the images,
and thus conclusions about the number and identity of the participant’s social relations can be
drawn. The publication of captured pictures may lead to similar consequences as in online social
networks, such as Facebook, where a teacher was suspended due to a picture showing her holding
glasses filled with alcohol [56], or a depressed woman who lost benefits from her health insur-
ance for pictures showing her attending parties and relaxing on the beach [57]. Similar to sound
recordings, the current user context and the surrounding environment may also be extracted from



sensor data. For example, pictures showing points of interest may easily establish the participant’s
presence at those locations.

• Acceleration: Raw accelerometer readings may appear less threatening in revealing private in-
formation about the participants. However, this hypothesis not always true and may often only
serve as a false sense of security. For example, if the mobile phone is carried on the hip, infor-
mation about the gait, and thus possible indications about a user’s identity, may be inferred [58].
Additionally, the research field of activity recognition also makes extensive use of accelerometer
readings [18]. The exploitation of these data by malicious users may have negative consequences.
For example, employers may want to verify that their employees are actually working during their
working hours. If the employers detect anomalies, they might suspend the respective employees.

• Environmental data: Recording particles and gas concentrations or barometric pressure may not di-
rectly threaten the privacy of the participants by themselves. However, particular air compositions
combined with secondary information, such as precise air temperature, might identify the location
of the participants at a level of granularity as fine as room levels within buildings, where location
information can be inaccurate due to non-availability of GPS or other location services.

• Biometric data: Biometric sensor data can be used for a diagnosis of a user’s current physiological
state. Similarly to medical staff, adversaries may identify health anomalies or diseases based on
the captured sensor data. Leaked medical information may then be used by health insurance
companies or employers to revoke contracts, if an impairment of the physiological conditions of
the participants is identified.

Privacy threats represent an inherent problem of any participatory sensing application. Although the
subjects of interests of environment-centric applications are not the participants themselves, all consid-
ered applications monitor the spatiotemporal context of the participants and therefore represent a danger
to their privacy. Furthermore, additional captured sensing modalities may provide further insights about
the participants. As a result, environment-centric applications can similarly endanger the privacy of
the participants, even if the threats are less perceptible at first sight than in the case of people-centric
applications.

Location privacy has been predominately addressed in the literature in comparison with the other
sensing modalities. The particular interest for location privacy may be due to the sharing of similar con-
cerns with orthogonal domains addressing this issue, such as vehicular networks [59], location-based
services [60], pervasive computing [61], ubiquitous computing [62], etc. In contrast, the remaining
sensing modalities are less represented in the literature, as they are one of the particularities of par-
ticipatory sensing applications. However, we have shown in this section that their combinations may
leak sensitive information about the participants and people in their vicinity, or provide information
about their locations, even if those are protected by privacy-preserving mechanisms. In comparison with
other application domains, addressing the privacy threats in participatory sensing requires thus to solve
a multi-dimensional problem, as opposed to location privacy only. In the current applications, these
threats are partially addressed by means of access control mechanisms. For example, the DietSense
system ensures that pictures tagged with location and time are only shared with trusted parties, specifi-
cally the nutritionist [11]. Although the identities of user and nutritionist are mutually known, possible
threats to the user privacy still comprise the recognition of faces or items in the pictures. A generic and
sufficiently fine-grained solution to balance the extent and detail of data revealed to the target audience
still remains to be found.

4 Countermeasures to Privacy Threats

After having outlined the privacy threats and the corresponding need for privacy-protecting mechanisms
to encourage user participation, we examine the current state-of-the-art solutions which attempt to ad-



dress these threats. We conduct a cross-analysis of the architectural elements present in typical sensing
applications and present existing countermeasures, as illustrated in Fig. 3.

Mobile phonesParticipants
Campaign

administrator Application server

Tasking
Sensing

preferences
Anonymous 

tasking

Sensing
Tailored sensing

Processing
Privacy-aware

processing

Reporting

Hiding selective
locations

Pseudonymity

Data perturbation

Spatial cloaking

Data aggregation
Processing
Privacy-aware

processing

Access 
control

preferences
Audit

Review
Deletion

Presentation
Access control

Audit
Participant intervention
Countermeasure

Storage
Local storage

Individual storage
Individual server

Storage 
management

Storage

Data review

Data deletion

Personal repository

End users

Figure 3: Countermeasures and their relationships to the architectural components

The sensed data passes through several stages between its collection and the consumption by the target
audience. By tracing the distribution path of sensor data, we outline how privacy can be maintained and
improved at each step. First we address the implications on privacy as outlined in the preceding section
by discussing tailored sensing and anonymous task distribution. We then consider different schemes
to anonymize and protect the privacy of the users while the data are reported to the application server.
Subsequently, we detail solutions for privacy-aware data processing and storage including mechanisms to
review, delete, and control the retention of sensed data. We conclude the discussion of countermeasures
by presenting current solutions to control and audit their access.

4.1 Tailored Sensing and User Preferences

A first measure to encounter the privacy threats discussed in Section 3 is to control the data collection
process at the user level and allow the participants to express their privacy preferences. In the presented
scenarios, this control is applied to different extents. Although some solutions allow the users to fully
disable the sensing function [25, 63], doing so is of little use for participatory sensing, since the user
would be unable to contribute any data. As proposed in [64], this binary scheme (full access to sensor
data, or none at all) can be extended by introducing additional intermediate levels. For example, the



participants may decide to selectively enable sensor measurements depending on a variety of factors,
such as presence in sensitive locations (home or office), or their current social surroundings (presence of
friends or family members). The selection of theses factors allows the participants to explicitly indicate
the type of information that they are happy with being collected in different contexts. They thus define
their personal conception of appropriateness as defined in Section 3.2.

To reflect the user’s privacy preferences whilst optimizing data fidelity, a finer-granular scheme allows
users to adjust the sensing granularity and the time resolution. For example, samples may be collected
every hour instead of every 15 seconds, or location information be captured at different degrees of
granularity [65]. Table 2 illustrates possible degrees of granularity and related examples which may be
applied in the context of some of the applications discussed in Section 2. Starting with the finest gran-
ularity on top, i.e., the unaltered original/raw data, the data resolution decreases towards the bottom
of the table until reaching the coarsest meaningful degree of granularity. Depending on the application
characteristics, the granularity of the different sensing modalities can be tuned in different ways, with
the ones presented in the table only serving as illustrative examples.

Table 2: Example of granularity degrees for different sensing modalities

Granularity Location Sound Photo Acceleration

Fine-grained
Precise Original Original

Raw data
position sample image

······· Street Voices Faces Activity
····· name removed blurred type
···

District
Spectral Number of Activity

· properties people category

Coarse City
Loudness Environment Motion

level (indoor/outdoor) (yes/no)

Although this scheme does not provide a generic trade-off between privacy and disclosed data, it
improves the overall acceptance of the solution by offering additional resolutions of granularity to the
users. From the perspective of the application, coarse-grained data is still better than no data. For
example, the location of air pollution measurements can be released at the granularity of a district.
It should also be noted that sensing granularity has a direct impact on the energy consumption of the
mobile phone. Whenever a sensor is activated for collecting data, it consumes the phone battery. As such,
sampling at a coarser granularity implies that the sensors may be turned off for longer periods of time,
thus resulting in energy savings. Simultaneously, both the size and quantity of the data to be transmitted
are reduced. Transmitting data also consumes energy for the radio (3G or WiFi) transmission, thus less
data volume also results in additional energy savings. However, additional processing may be required to
filter the data and report them with a coarser granularity (e.g., recognizing the presence of faces on the
images to eliminate them) leading to supplementary energy consumption, which needs to be regarded
specifically.

4.2 Anonymous Task Distribution

Sensor data collection is generally triggered through tasks, which specify the sensing modalities (e.g.,
regions of interest, criteria to fulfill to start the capture, sensors used and sampling frequency) based
on the application requirements. The tasks are distributed to the mobile phones that satisfy the tasking
requirements.

The tasks are either statically deployed on the phones or initially downloaded from the application
server. A central tasking component located on the application server or a dedicated tasking server [40]
selects appropriate devices based on predetermined criteria to optimize the sensing process, such as
the current location of the mobile phone or its available resources (embedded sensors, battery lifetime,
currently executed tasks, or processing capabilities) [66]. Once the devices are selected in a centralized



task distribution model, the application server deploys the sensing tasks on the devices, e.g., via a push
model based on executable binaries [64].

In contrast to centralized tasking, mobile phones autonomously manage and distribute tasks in case
of decentralized task distribution, such as proposed in [67]. The distributed character of decentralized
task allocation allows it to transfer the sensing responsibilities to devices in its proximity. For example,
a mobile phone A, which is not equipped with the sensors required by the tasks, transfers its tasks to
other mobile phones embedding such sensors in the vicinity. A initiates the task transfer by broadcasting
requests including the task to execute and the corresponding sensors to mobile phones B and C in
its proximity. At the reception of these requests, B and C verify if they can fulfill the included task
conditions. Assuming that only B possesses the required sensors, A transfers its sensing task to it. B
can fulfill the transferred task either instantly if both mobile phones are located in the task’s region of
interest or remotely when B enters the region of interest.

The Bubble-sensing model [68, 69] is a hybrid alternative to the purely centralized and decentralized
schemes. Although mainly based on decentralized distribution of tasks, the concept also requires the
presence of a central entity to maintain the sensing tasks. Participants, designated as bubble creators,
can create persistent sensing areas at defined places of interests. They initiate a sensing request including
the geographical region, duration, and sensing modality corresponding to each bubble and broadcast it
to potential bubble carriers (i.e., other participants) in a distributed fashion. Bubble carriers may then
move to the specified location, perform the sensing, and report the collected data to the central entity,
the bubble server, from where the data can be retrieved by the bubble creator. The persistence of bubbles
during the sensing period is ensured by designating bubble carriers with low expected node mobility as
bubble anchors, which maintain bubbles on behalf of their creators, should they become disconnected
from the bubble. Nevertheless, bubbles may disappear in absence of anchors. To encounter this issue and
restore orphaned bubbles, the participants additionally contact the bubble server in regular time intervals
to search for bubbles near their current location, and join them if the required sensing modalities match.

In all three presented approaches for task distribution, the tasking and downloading processes may
endanger the privacy of the participants in several ways. First, downloading tasks provides information
to the tasking server about the location of the participants at precise timestamps, while the nature of the
tasks provides hints about the devices used. Additionally, even when pseudonyms are used, the tasking
server may infer the identity of the participants by tracking their locations over multiple downloads, as it
may expose the location of their workplaces and homes [70]. To protect the participants, the following
mechanisms for ensuring anonymity and location-privacy have been proposed:

• Using tasking beacons [71]. The participating devices receive the broadcast beacons including the
sensing tasks without having to register/authenticate themselves to a central entity.

• Downloading the tasks in densely populated locations [72]. The high density of people present
at such locations makes the identification of the participants by the server difficult, and hence
conceals their identities.

• Using attribute-based authentication [71]. Instead of using their precise identity, the participants
can use cryptographic-based credentials showing their memberships to a particular group (e.g.,
students registered in the cycling club of the university), as realized in [73]. Again, the identities
are hidden within the group of participants and the level of protection depends on the size of this
group.

• Using location privacy-preserving routing schemes [71]. Although not directly anonymizing the
participants, these schemes hide their location using specific router/relay organization [74, 75].
For example, the TOR-based routing scheme used in [72], anonymizes the connections to the
tasking server using multiple relays and onion routing to hide the IP address, and thus information
about the current location, of the participants.



Moreover, a malicious tasking entity may submit tasks with restrictive acceptance conditions including,
e.g., a rare sensor type or specific mobile phone brands. Known as narrow tasking [72], this attack may
allow the attacker to de-anonymize the mobile phones accepting these highly device-specific tasks, as
only one or few mobile phones share these restrictive conditions. A countermeasure to the narrow
tasking attack consists of introducing a trusted third party storing the attributes of all mobile phones and
verifying that a sufficient number of mobile phones (above a pre-determined threshold) are able to fulfill
the acceptance conditions in order to protect the anonymity of the mobile phones accepting the tasks.

Furthermore, a malicious tasking entity may attempt to differentiate and identify anonymous partic-
ipants by launching selective tasking attacks [72], where the tasking entity distributes a task to only
a restricted pool of mobile phones (greater than the aforementioned threshold). The selective tasking
attack differs from the narrow tasking attack, as the selective tasking attack aims at linking the anony-
mous mobile phones uploading the tasking reports to the reports themselves, while the narrow tasking
attack straightforwardly infers the identity of the devices/participants based on the task acceptance. As
the amount of tasked devices is restricted, the adversary can easily link each anonymous mobile phone
to the reports it has uploaded. A further analysis of the uploaded reports may breach the anonymity of
mobile phones. To prevent this attack, the responsibility of selecting the tasks can be transferred from the
tasking server to the participants themselves, who select a random amount of available tasks to execute.

While protecting the anonymity and privacy of the participants, these mechanisms simultaneously
impact the performance of the sensing applications in terms of data integrity and the associated over-
head. Since the identity of the participants is not revealed to the application, the anonymous devices
may report falsified or faulty data, and the application will not be able to identify them and eliminate
them from the tasking process in the future. Moreover, without knowing the participant’s identity and
location as well as the device specifications, the application may need to task a larger pool of devices to
obtain similar results when compared to non-anonymous tasking. This may cause additional resource
consumption and delays, potentially affecting the results of time-constrained applications.

4.3 Anonymous and Privacy-preserving Data Reporting

In most applications, captured sensor data are reported to the central server directly after they have
been recorded. Almost exclusively all participatory sensing applications record location/time traces
(cf. Section 3). A prominent attack is thus the inference of location traces, as all presented participatory
sensing campaigns share the common attribute of collecting location information along with the sensor
data. The collection of location traces over several reports may allow to identity frequently visited
locations, and the disclosure of the raw location data is likely to reveal the identity of participants and
may thus endanger their privacy.

Besides the actual data contained in the reports, metadata collected from submissions may also
threaten the privacy of the participants. As data transfers mostly make use of communication infras-
tructure available to the mobile phone, such as Wireless LAN, or GSM/GPRS/3G connectivity [12, 10],
location information can be extracted from the IP address assigned at the time of submission, or the
upload intervals and schedules at which data are being transferred to the server. Based on the upload
schedule, additional conclusions about the whereabouts of the participants can be drawn, even without
considering the primary sensor readings. Similarly to an in-depth inspection of reports, the participants
may be identified and de-anonymized by analyzing the metadata collected across multiple reports [72].

In this section, we consider the mechanisms used to protect the privacy of the participants against the
analysis of reporting patterns and report contents.

4.3.1 Pseudonymity

A common mechanism to protect the anonymity and privacy of the participants is the use of pseudonyms
(cf. Section 4.2). Instead of transmitting names in plain text, all interaction with the applica-
tion is performed under an alias. Pseudonymity is currently used in various applications, includ-



ing [63, 22, 27]. When used in conjunction with authentication mechanisms, pseudonym-based so-
lutions suggest anonymity and confidentiality to the user [63]. The participants tend to share their
sensor readings without apprehension as they feel more protected behind pseudonyms. This subjective
feeling however leads to a false perception of security, as the use of pseudonyms does not necessarily
guarantee privacy in location-based applications. As demonstrated in [76], an analysis of the reported
data in conjunction with the reporting patterns may allow identifying the participants’ residences among
other significant places, such as workplaces and favorite entertainment centers, based on their location
traces. The residence addresses may then be exploited to find the corresponding participants’ real names
using reverse address lookups. Pseudonyms must therefore be complemented by additional mechanisms
to protect the participants’ locations (during both the sensing and reporting processes) to efficiently pro-
vide privacy guarantees. The anonymity-based TOR network [75] is used in [72] to hide the origins of
reports and prevent an identification of the real identities of the participants from their locations. Before
transmitting reports, the mobile phones select random relays along the path to the application server,
instead of a direct route. The selected routes are then appended to the reports using a layered scheme,
similar to onion layers. At each relay on the selected routes, a layer is removed using a symmetric key
shared between this relay and the mobile phone. As a result, no relay knows the complete path from the
report’s source to the application server, but only the identities of preceding and following hops/relays.

4.3.2 Spatial Cloaking

In addition to privacy-aware routing (e.g., TOR-based networks), mechanisms based on k-anonymity [77]
can be applied to protect the location privacy of the participants who upload reports. The key idea behind
k-anonymity is to build groups of k participants or reports such that they share a common attribute (e.g.,
k participants located in the same district), rendering them indistinguishable from each other. Different
methods can be used to find an appropriate and common attribute in order to construct groups of k users.
These methods can be classified into the two main categories of generalization and perturbation [78].

In the former, the original value of the attribute is generalized by a value with less degree of detail.
For example, the exact coordinates of the k participants are replaced by the name of the district of their
current location. In contrast, perturbation is based on replacing the original sensor data by a new value
resulting from a function applied to the k sensor readings of the group members. For example, the
location of each group member can be replaced by the average location of all members.

Tessellation is a form of generalization based on the division of a geographic area into multiple tiles.
It is applied in [72], where tiles are established by applying Voronoi partitioning to a map of Wireless
LAN access points. The access point in the center of each tile keeps track of the average number of
connected devices, which is equal to the maximum value of kt that can be achieved within the tile.
To guarantee k-anonymity throughout the network, neighboring tiles with kt < k are combined into
cells with an effective value equal to the sum of each individual tile. Once the cells have been defined,
the participants tag their sensor data with the geographical boundary of their current cell instead of
supplying their exact coordinates. Alternatively, instead of transmitting the dimensions of the cell, the
participants may report the geographical center of the cell, as proposed in [78].

In contrast, microaggregation [79] does not generalize the participant location to a cell, but replaces
the real location by the averaged location of the k nearest participants, the so called equivalence class.
Setting up equivalence classes is known to be NP-hard [80], and among the proposed heuristics, the
Maximum Distance to Average Vector (MDAV) algorithm has been shown to be very efficient in setting
up equivalence classes. However, as user mobility is inherent in participatory sensing applications, equiv-
alence classes may need to be changed dynamically and thus protect new users less efficiently. Frequent
recomputations in turn may negate the efficiency advantage of MDAV. The V-MDAV [81] algorithm of-
fers variable class sizes and improves the performance of its predecessor in dynamic environments. The
recursive algorithm is composed of two main steps. In the first step, k participants are clustered based
on their locations and the relative Euclidean distances. Once the clusters are formed, additional par-



ticipants can join the clusters in the second step, even if each cluster already contains k members and
thereby fulfills the k-anonymity requirement.

A risk to k-anonymity is the possibility of homogeneity attacks, as outlined in [82]. Such attacks
exploit the monotony of certain attributes to identify individuals from the set of k participants. The
authors thus present an extension to k-anonymity, termed l-diversity, which additionally requires the
group members to provide at least l different values for the sensed attribute of interest. As a result, at
least l distinct values for the sensitive attributes are present within each user group, which represents
an effective countermeasure to homogeneity attacks. The principle of l-diversity is employed in [78],
where an l-diverse extension to the aforementioned V-MDAV (LD-VMDAV) algorithm is proposed and
evaluated. The authors also extend the V-MDAV scheme further by introducing Hybrid V-MDAV, which
combines V-MDAV with tessellation (with tile center reporting). The hybrid scheme thus benefits from
the advantages of both approaches. Tessellation is applied if a user can construct a tile within his own
cell, meaning that at least k other users share the same cell. Otherwise, the V-MDAV scheme is used, as
it performs better in case of sparse distribution of users across multiple cells.

Nevertheless, these approaches rely on a trusted third-party managing the generalization or perturba-
tion of the locations for all participants. To generate the cloaked values, the participants need to report
their exact locations to the third-party entity. A further improvement in privacy is achieved by adding
Gaussian noise on the location information, as proposed in [78], to perturb and blur the locations of the
participants before sending location information to the third-party, as detailed in the following section.

4.3.3 Data Perturbation

Data perturbation intentionally perturbs the sensor samples by adding artificial noise to the data at the
mobile phone side, such as Gaussian noise. The overall intention of data perturbation is to determine
community trends and distributions without revealing individual data. The characteristics of the applied
noise must thus be chosen carefully, as it needs to perturb individual sensor readings sufficiently while
still ensuring that the statistical trend remains unaffected. For example, independent random noise has
been demonstrated to be insufficient to prevent adversaries from reconstructing the original data in [70].

A data perturbation scheme particularly tailored to the requirements of participatory sensing applica-
tions was proposed in [83]. Its principle is as follows. First, a noise model with characteristics similar
to a realistic data set is generated using an approximate model of the phenomenon monitored by the
application. Note that preliminary knowledge about the data distribution is required, which may not be
available in all participatory sensing applications. The designed model, which is composed of a structural
description as well as the probability distribution of the parameters, is then distributed to the commu-
nity. The participants use the distributed model to locally generate noise and superimpose it on their
sensor readings. To complicate the reconstruction of each individual data, the proposed approach allows
the participants to change the values of the noise generation parameters regularly. The data perturbed
by the participants are then reported to the application. As the statistical characteristics of the noise
model are known, the sum, average and distribution of the added noise over the data of all participants
can be approximated. The community results (including trends and distribution) can be estimated by
subtracting the average noise time series from the sum of all individual perturbed data, the precision of
the estimation increasing with the community size. Other examples that make use of data perturbation,
though not in the context of participatory sensing, can be found in [84, 85, 86].

4.3.4 Hiding Sensitive Locations

Sensitive locations can be selected by the participants and protected using location selective hiding [20],
which was introduced in the PEIR campaign presented in Section 2.1.2 and represents an alternative to
data perturbation. When the user approaches a location which has been priorly defined as sensitive, the
application generates fictitious location traces which intentionally avoid the selected location. However,
the generated traces remain realistic, i.e., following exiting roads and streets. The algorithm selects the



closest routes first, then refines the selection by taking the history of the participants’ results into account
(e.g., their physical capacities based on their preceding experiences). Furthermore, the algorithm even
shifts the activities timely and modifies their duration to maintain the consistency of the application
results.

In comparison with data perturbation (Section 4.3.3) and spatial cloaking (Section 4.3.2), the location
selective hiding scheme improves the location privacy without impacting the application results. In fact,
data perturbation and spatial cloaking only modify the location information without considering the
consistency of the results and visits to the sensitive locations may still be identifiable after the application
of these schemes depending on the granularity and noise model selected.

4.3.5 Data Aggregation

In comparison to the previous schemes, the privacy-preserving data aggregation approach proposed
in [87] does not rely on a central entity to protect data privacy, but on a mutual protection within
participants. Before transmitting data to the server, the mobile phones partially distribute their data
among their neighbors. The mobile phones then upload the sensed data coming from their neighbors
and the remaining of their own data. This distribution diminishes the probability to successfully attribute
each sensor reading to the mobile phone which actually captured it. For example, if two mobile phones
A and B exchange half of their data, the probability that the data reported by A was actually captured by
itself is 50% (in absence of any additional and prior knowledge), and the same for B.

Moreover, this approach does not require any preliminary knowledge about the data distribution which
is necessary in data perturbation schemes (cf. Section 4.3.3). Depending on the nature of the aggrega-
tion functions, two distinct schemes can be applied. For additive functions, each mobile phone/node
partitions its data into n + 1 slices and sends one slice to each of n selected nodes. There are three
ways in which nodes can be selected. In the first model, the nodes are selected randomly regardless of
their location leading to an additional energy consumption overhead if multi-hop communication is sup-
ported. In the second model, the one-hop neighbors are selected via a single broadcast. The efficiency
of the privacy protection directly depends on the density of neighbors located in the broadcast regions,
as n is lower in sparsely populated regions than in dense ones. An h-hop version is proposed in the third
model, where h is a system parameter. Once each node has distributed its slices to his neighbors, the
exchanged slices and the node’s own slice are combined and sent to the aggregation server which is then
able to compute the aggregation result. For non-additive aggregation functions, such as percentiles and
histograms, a method combining slicing, count query, and binary search can be applied. Nevertheless,
this approach only ensures data privacy protection if the nodes and the server do not conspire to breach
the privacy of potential targets. We present a simple example to illustrate this. Assume that a node A is
surrounded by two malicious nodes B and C . A partitions its data into three slices and distributes two
of them to B and C , which do the same. Then the three nodes report the mixed slices to the server. As
B and C can recognize their own slices and those distributed by A, the server can easily reconstruct the
complete data set from the three uploaded slices and associate it to A.

4.4 Privacy-aware Data Processing

In typical participatory sensing applications, data processing is shared between the mobile phones and
the application server. However, due to the resource constraints on mobile platforms, the distribution
of the processing tasks between both parties is typically biased towards the server. While preprocessing
is generally carried out on the phones to reduce the amount of data to transfer in order to save band-
width and transmission energy, complex processing tasks may exceed the computational power of mobile
phones, mandating the execution on the server.

In the applications discussed in Section 2, the data processing on the mobile phone mainly constitutes
extracting features from the raw data to remove sensitive information (e.g., human voices recorded, or
people photographed) endangering the privacy of the participants and for resource saving purposes. For



example, an audio classifier can analyze the sound samples to determine whether human voices were
recorded [25]. Further, the loudness level of the audio samples can be determined locally by running
signal processing algorithms to minimize the data to transfer to the server [30]. After processing, the raw
data may be deleted from the local storage and the processed summmaries are reported to the central
server.

On the server side, the reported data may then be processed to eliminate privacy-sensitive information,
such as the identity or data characteristics threatening the anonymity/privacy of the participants. For
example, the captured data can be aggregated among several participants to render them indistinguish-
able or published in the form of statistics [38] and maps [12]. By doing so, sensitive data is not directly
revealed to the end users, which avoids direct identification of the participants. However, the partici-
pants must rely on the application to: efficiently anonymize the data, sufficiently protect their privacy,
and not disclose the privacy-sensitive information contained in their reported data to third parties.

4.5 Review, Deletion, Storage, and Retention of Data

After the collecting sensor data, the participants can review them to verify that they do not contain
sensitive information (e.g., faces in pictures, or sensible locations) and judge of the appropriateness of
the released information. If privacy-sensitive or inappropriate items are identified, the participants can
discard and delete them before the data is being reported to the application server [3]. Alternatively, the
application can automatically discard the buffered sensor data unless the participants review them and
indicate their willingness to share the same [63].

Most of the applications discussed earlier rely on a centralized system storage managed by the appli-
cation itself. The whole pool of sensor data is easily accessible for processing, which is advantageous
for the application. However, this solution reduces the participants’ control over their data. Once they
have uploaded their data, the participants must trust the central entity not to disclose them to unautho-
rized third parties. Even if applications may authorize the users to delete the uploaded data or adopt
retention policies favorable for the participants (e.g., deleting the location information every six months
by default [20]), the participants do not typically receive any confirmation that data has been definitely
removed from the server.

To address this loss of control, a short-term solution may be to locally store the sensitive data on the
mobile phones to prevent third parties from accessing and potentially misusing them. However, the
mobile phones often suffer from resource and energy constraints, which effectively limit storage and
processing capability. Moreover, this storage modality may not be appropriate to community-oriented
applications, where global processing may be necessary to highlight interesting features of the data.

A solution for the secure data storage is the use of so called personal data vaults [88], which uncouple
the acquisition of sensor data and their secure storage. Personal data vaults are individually controlled
secure data repositories, which may only be fully accessed by their owner. The owner may however
choose to share information based on its time or location annotations, or provide post-processed data
to external services. Personal virtual machines also represent an alternative to local storage, designated
as virtual individual servers [89], where the participants can upload their raw data. The data is only
uploaded once and may then be released to all applications the participants are involved in. Different
applications can be authorized to access different sets of data according to their demands. Consequently,
the participants maintain the control over their data and can dynamically determine potential recipients
of selected sets of data. In comparison with a centralized scheme, this approach may generate additional
management overhead for the participants, but they retain ownership of their data and can directly
control their privacy.

4.6 Access Control and Audit

Depending on the application scenario, the sensing results may not only be of interest for the partic-
ipants, but also different stakeholders, e.g., researchers, medical staff, friends, family members, city



councils or a larger public. However, the participants may not be willing to share their data with all
types of people within the stakeholder group and with the same granularity. In addition to address-
ing privacy concerns before the sensing process (cf. Section 4.1) and the data release to the application
(cf. Sections 4.4 and 4.5), the participants can define the intended audience who are authorized to access
their data from the user interface of many applications. They can define groups [41, 8, 22], select per-
sons individually [11, 25, 8, 22] or authorize everyone [8]. The participants can refine their selection by
specifying the nature of the data they share and may additionally define particular subsets of accessible
data [11, 25, 22]. Furthermore, they can define precise release conditions (e.g., time, location, and data
type) under which the data are made accessible [63]. Similarly to the selection of the sensing modalities
presented in Section 4.1, these actions support the expression of the concept of appropriateness and its
personalization by the participants.

To highlight the privacy implications of sharing their data, graphic tools including maps, charts, or pic-
tures are used to visualized the data being released and increase the participants’ awareness [63]. After
data has been published, the participants can also monitor access to the data by consulting application
log files. These logs records the nature of the accessed data, the frequency of these accesses, and the
identity of the people accessing it [63, 22, 88]. Based on the results of these audits, the participants
control the distribution of their information and can judge of their appropriateness. If needed, they may
update their access control policies to restrict or enlarge the authorization conditions in order to match
their privacy preferences.

5 Future Research Directions

Above, we have discussed the privacy threats in participatory sensing applications and we have surveyed
selected privacy solutions to mitigate these threats. We found that tailored and practical privacy solutions
are scarce, and that fundamental research in the field of privacy for mobile participatory sensing is still
in its infancy. Thus, a broad range of research challenges still remain unsolved. In the following, we
highlight future research directions in the area of privacy in mobile participatory sensing applications,
both from the perspective of the authors of the surveyed work as well as from our own perspective; note
that our list of given challenges is by no means exhaustive, but contains our subjective impression of the
most relevant challenges at the time of writing this article.

Challenge 1: Including the participants in the privacy equation

We identified the three groups of stakeholders in Section 2.3.1 to be the campaign administrators (pro-
viding the application platform, maintaining the infrastructure, etc.), the participants (contributing the
sensor data), and the end-users (consuming the obtained sensing results). A key challenge for the future
is to better include the participants (or unsuspecting participants)2 in the privacy equation. This includes
aspects such as:

• Tailored privacy interfaces: The notion of privacy is highly individual and depends on the user’s
views and opinions. It is thus crucial to create awareness for privacy threats to the user, and
assist him by making the complex configuration of participatory sensing applications easily under-
stood. However, most of the discussed privacy-preserving countermeasures do not present a user
interface that can raise awareness and facilitate the comprehension of the complex mechanisms
in use. Tailored user interfaces, which consider unique features of mobile devices, are thus highly
sought after. Moreover, the existence of such interfaces can encourage the acceptance and later, the

2 In April 2011, the Apple iPhone was publicly discussed in mainstream media, since its operating system was tracking
information about encountered wireless access points and GSM cells without prior notice to the (unsuspecting) users.
The main purpose of collecting these data in a participatory manner was claimed to be the use of a “crowd-sourced Wi-Fi
hotspot and cell tower database which is downloaded from Apple into the iPhone to assist the iPhone in rapidly and
accurately calculating location” [90].



adoption of the privacy-preserving mechanisms by the participants, as they will be able to better
understand (through the interfaces) the ins and outs of the mechanisms.

• Ease of use: The usability of the application and its privacy settings needs to be taken into consid-
eration. Extensive manual configuration often overstrains a participant’s patience and leads him to
either leave the default settings or not understand the implications of his choices, as demonstrated
in the case of privacy settings in online social networks [91].

• Transparency of privacy protection levels: To judge whether the offered privacy protection is ad-
equate, users need to be able to compare the offered level of protection against their individual
protection requirements. Although most of the surveyed solutions base their evaluations on math-
ematical and verifiable metrics, the user perception and their level of satisfaction with existing
solutions has not been explicitly regarded yet.

• Incorporation of user feedback: Besides providing user interfaces to configure privacy levels, in-
sights about how the protection is perceived and to which extents users are involved in configuring
their privacy settings are required to bring forward the usability.

User studies are deemed an integral tool to assess the usability and utility of privacy solutions [88].
Existing studies in the field already correlate privacy concerns with the used sensing modali-
ties [92], or analyze how the participants understand, select, and feel comfortable with different
obfuscation methods to achieve location privacy [93].

In the future, the integration of the participants in the privacy equation could be supported by concepts
and methodologies issued from participatory action research [94] and community-based participatory
research [95]. Even though, these ideas have been conceived for other application domains, the par-
ticipatory sensing community could benefit from these tools, which promote tight cooperation between
participants and application developers to build solutions addressing the needs of the participants based
on their direct feedback.

Challenge 2: Providing composable privacy solutions

We have witnessed a tremendous growth in mobile participatory sensing applications during the last
years. Novel sensing modalities have been incorporated with the ongoing technological development
of mobile phone platforms, leading to a growing family of applications with innumerous application-
specific privacy challenges. To be able to deal with this broad range of scenarios, it is necessary to cater
for composable and adaptable privacy solutions.

• Application independence vs. tailored privacy solutions: Some of the presented countermeasures
are tailored to specific application scenarios. For example, hiding sensitive locations by creating
fake location traces to avoid correlations between users and locations (Section 4.3.4) was only
evaluated with the PEIR scenario (Section 2.1.2). Further scenarios need to be investigated to
determine the potential limits and drawbacks of the proposed solutions depending on the applica-
tion specifics. This investigation will highlight necessary changes to proceed from tailored privacy
solutions to application-agnostic privacy concepts.

• A system approach to preserving privacy: In the various countermeasures that we have dis-
cussed (Section 4), only selected privacy aspects are addressed. However, to gain widespread
acceptance among the participants, a flexible privacy architecture that addresses the problem from
a system perspective is essential. By analyzing assets and drawbacks of centralized and distributed
system components, a research hypothesis could be that the combination of both distributed and
centralized approaches allows to better represent the multi-party nature of the privacy trade-off
between all stakeholders.



• Privacy for evolutionary sensing scenarios: In scenarios, in which the characteristics of sensor data
are known in advance, privacy solutions can be adapted accordingly, e.g., by adding noise with
corresponding properties (cf. Section 4.3.3). However, in case of dynamic and/or unpredictable
sensing scenarios, where the characteristics of sensor data cannot be determined in advance, novel
privacy concepts need to be devised.

Challenge 3: Trade-offs between privacy, performance, and data fidelity

Strong mechanisms (such as removal or obfuscation of sensor readings, as shown in Section 4.3.2) for
privacy protection might influence the data fidelity, the sensing delay, or the integrity of the sensed data.
Protecting the integrity of sensor data however counteracts mechanisms for privacy preservation. In
consequence, a trade-off between privacy guarantees and sensing fidelity is necessary.

• Anonymity vs. data quality/integrity: In all participatory sensing applications, user participation
needs to be encouraged by guaranteeing their privacy. At the same time, this makes the systems
vulnerable to malicious users and faulty devices, which may contribute corrupted or erroneous
data to the applications. To prevent this data from degrading the accuracy of the application
results, the devices or the data in question need to be identified and discarded from the pool of
tasked devices/sensed data. Research on reputation systems that cater for both anonymity and the
requirements and specifics of the sensing scenarios is therefore required.

• Multi-party privacy protection: While it has been shown in [49] that participants value the location
privacy of their friends, most of the current privacy-preserving mechanisms focus on the protec-
tion of the participants themselves. But the privacy of people in their surroundings may also be
threatened, as shown in DietSense, where faces of uninvolved people can appear in the contributed
images. In current systems, it is mostly the user’s responsibility to protect the privacy of bystanders.
However, malicious participants may also deliberately distribute compromising information about
others. Current solutions in related domains specifically deal with the conflict between the owner
of a photo and the people tagged in it [96]. Automated solutions to minimize the captured data
such that it does not violate the privacy of others is of high interest.

• Overriding privacy: Although the protection of sensitive data is highly valued, certain situations,
like emergency scenarios, necessitate means to override the specified privacy settings. This can
be compared to privacy issues encountered in health scenarios (discussed in Section 2.1.1), where
physicians might be able to override the access control of body sensors to get access to critical
health data. Approaches for controlled access in case of emergency, e.g., by explicitly defining
exception conditions and controlling that data are only made available when emergency conditions
are met, are thus of high relevance.

Challenge 4: Making privacy measurable

Different methods, criteria, or metrics are currently being used to evaluate the performance of the pro-
posed solutions in terms of privacy protection. While it might be difficult or even impossible to come up
with universal metrics to quantify privacy, the need to define generalized metrics is widely acknowledged.
Capturing the level of privacy protection independent from the particular application scenario can thus
be seen as a long-term research goal. The definition of generalized privacy metrics, independent from
the application scenarios, is mandatory to achieve a common basis for comparing privacy-preserving
mechanisms.

• Generalized privacy metrics: Similarly to the approach of attaining a common understanding of
anonymity [97] due to the incapacity of current anonymity metrics [98], universal privacy metrics
are required to quantify degrees of privacy. To obtain such metrics, currently employed privacy



metrics need to be surveyed to determine what input parameters (e.g., amount of participants in
the same region, actual and perturbed location traces) are considered necessary to calculate the
degree of privacy and what is the nature of the output parameters (e.g., Euclidean distance between
the actual and perturbed traces) depending on the application scenarios. Additionally, privacy
metrics from other application domains should to be analyzed with respect to their applicability in
participatory sensing. A comprehensive and generalized framework for privacy metrics could be
the result of further research.

• Provable guarantees for privacy: Most of the countermeasures discussed in Section 4 rely on a
central entity to protect user privacy and anonymity. However, in the existing solutions there
are no guarantees or proofs that the promised degree of privacy is respected, implementation
details are hardly available, and even the general approach towards protecting the privacy of users
is typically unknown. As a result, current systems are mostly designed as a black box, where
the participants must trust the application that the announced privacy-preserving mechanisms are
applied and the contributed data are not disclosed to third parties. Research into provability of the
privacy mechanisms and into proving the correctness of the implementation of these mechanisms
still remains an open field of research.

Challenge 5: Defining standards for privacy research

Due to their sensitive nature, public real-world data sets for participatory sensing applications are scarce.
Hence, privacy research mostly operates on either private or synthetic data sets. As a result, no well
accepted data basis for the evaluation of novel mechanisms exists, and mechanisms cannot easily be
benchmarked against each other.

• Open data sets: To overcome the limitations of researching on private or non-reproducible data, the
research community should provide for open data sets that can serve as a baseline for performance
and security evaluations. This includes real-world data sets as well as representative synthetic data
sets for various different sensing modalities.

• Open privacy solutions: Implementations of privacy mechanisms, as discussed in Section 4, are
often unavailable to the general public, thus making it hard or even impossible to benchmark
them against newly proposed mechanisms. Making either a detailed technical description of the
implementation or the implementation itself available to the research community allows to cross-
validate the results and to benchmark individual solutions.

Challenge 6: Holistic architecture blueprints

Finally, to implement privacy-preserving participatory sensing applications, it is important to provide
a solution covering the entire system and satisfying the requirements of all stakeholders. To this end,
architectural blueprints for privacy-preserving participatory sensing systems are required. To allow for
a system-wide support, the individual components as well as their interworking needs to be analyzed.
Research on holistic system support for privacy-preserving participatory sensing could be one step to-
wards this end that complements the platform support on the mobile phones as well as the application
platforms.

6 Conclusions

Participatory sensing leverages the ubiquity of mobile phones to open new perspectives in terms of
sensing. Within the scope of this survey, we have analyzed existing applications and mapped their
components into a generic system model, and identified the different modalities of sensor data con-
tributed by the participants. Our analysis has revealed that virtually all applications capture location and



time information. This information is used either as self-contained data, or to geo-tag and timestamp
other collected sensor readings including pictures, sound samples, acceleration, pollution, and biometric
data. We have then examined the extent of personal information that can be inferred from the collected
sensing modalities, both individually and in combination. After having provided a definition of pri-
vacy in participatory sensing, potential threats to user privacy resulting from the uncontrolled disclosure
of personal information to untrusted people have been highlighted. As these threats may discourage
participants from contributing sensor readings, we have surveyed current state-of-the-art privacy coun-
termeasures, and analyzed their position within the architecture of participatory sensing systems. Based
on the state-of-the-art, we have presented and discussed future research directions which need to be
tackled to efficiently protect privacy and, consequently, encourage the contribution of the participants.
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