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Abstract. Smartwatches are increasingly being used as fitness and health
trackers. To provide such a service, these devices have to collect and pro-
cess movement data gathered by built-in accelerometers and gyroscopes.
Based on these data, existing studies leveraging smartphones have shown
that it is possible to distinguish users when they (1) walk, (2) perform dif-
ferent hand gestures, or (3) pick up their phone from the table. However,
to the best of our knowledge, the case of cycling has not been addressed
yet. The goal of this paper is to close this gap by investigating whether it
is possible to infer information about users wearing a smartwatch coupled
with their smartphone when cycling, their bike type, seat height, gear,
and the terrain. In addition, we explore whether it is possible to distin-
guish individual users based on their movement patterns that may lead
to their (re)identification. To this end, we conducted a user study with
17 participants, equipped with a smartphone and a smartwatch, who had
to ride along a bike road for two km. Among others, our results show
that it is possible to infer the four characteristics bike type, gear, seat
height, and terrain with accuracies of 93.05%, 92.23%, 95.76%, 94.24%
respectively and distinguish participants with a probability of 99.01%.

Keywords: Behavior Analysis · Activity Recognition · Bike Identifica-
tion · User Recognition.

1 Introduction

The use of smart devices, such as smartwatches and smartphones, in our pro-
fessional and private life is steadily increasing [1–3]. In addition to support easy
communication and quick access to information on the Internet, these devices are
also equipped with various sensors allowing for a myriad of applications. For ex-
ample, they are gaining popularity in the areas of fitness and health tracking [4].
In order to provide such services, the applications collect and analyze data of the
devices’ users. Often, movement data are collected by built-in sensors, such as
the accelerometer and gyroscope, for these purposes. These data are then used
for various tasks, such as counting daily steps, analyzing individual walking be-
havior and deriving additional health-related information [5], or to detect severe
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falling incidents [6]. Related work has also shown that the movement data can be
used to recognize and distinguish di↵erent activities, such as walking, running,
or cycling [7–9]. Even non-sports activities such as eating, drinking, or writing on
a keyboard can be determined from these data [10,11]. For walking, the data can
even be used to distinguish and identify di↵erent users [12] by their gait. Kröger
et al. give a detailed overview about potential inferences based on accelerometer
data and show that besides activity and user recognition also personal informa-
tion, such as the age or gender could be inferred [13]. However, cycling has not
been considered yet. As a result, this raises the following research questions that
we address in this paper:

– Which information about the cyclists can be derived from their movement
data collected using their smartwatch and smartphone?

– Which information can be inferred about their bike (e.g., bike type, seat
height, and gears)?

– Which information can be derived about the terrain?

To answer these questions, our contributions are as follows. First, we have
built a data set consisting out of all combinations of the characteristics bike type,
seat height, gear, and terrain. This data set is based on the sensor readings of
one single person, resulting in a size of 1.1 gigabyte. Second, we conducted a
user study with 17 participants (10 male, 7 female) between the ages of 19 and
64. In the study, they were equipped with a smartphone and a smartwatch and
instructed to ride a predetermined bike road for two km. While the seat height
could be adjusted depending on the participant, the type of bike remained the
same for all participants. Inspired by existing studies on human gait recogni-
tion, we have processed the collected data and split it according to individual
pedal rotations. The prepared data serves as basis for the training and testing
of di↵erent machine learning models to explore whether characteristics about
the participants, bikes, and/or terrain can be predicted and how unique cycling
patterns are between participants. To this end, we have considered the follow-
ing algorithms: Gaussian Naive Bayes (GNB), k-Nearest Neighbours (KNN),
linear Support-Vector Classification (SVC), Decision Tree (DT), and Random
Forest (RF). The results show that the best performances are obtained for the
four characteristics bike type, gear, seat height, and terrain with accuracies of
93.05%, 92.23%, 95.76%, 94.24% respectively and distinguish participants with
a probability of 99.01% all by utilizing the RF algorithm.

The remainder of this article is structured as follows. In Sec. 2, we discuss
related studies that dealt with both activity and user recognition based on dif-
ferent activities and highlight our contributions. In Sec. 3, we are describing the
methodology applied in our user study to collect our data. In Sec. 4, we describe
the approach used for the analysis of the collected data, while we present our
results in Sec. 5. In Sec. 6, we comment on the limitation of our study and future
work, before making concluding remarks in Sec. 7.
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2 Related Work

Related work can be split into the following two categories: (1) activity recogni-
tion and (2) user distinction.

In the field of activity recognition, both smartphones and smartwatches can
be leveraged. Using smartphones and their accelerometers and gyroscopes, cer-
tain activities, such as walking, running, or cycling (e.g., [7–9, 14–17]), can
be recognized. Using smartwatches, additional activities such as eating, drink-
ing, writing on a keyboard, and fitness activities can also be recognized (e.g.,
[10, 11, 18–20]).

Apart from activity recognition, movement data can also be used in order
to identify users. Zou et al. show that using the collected accelerometer and
gyroscope data from a smartphone in the field can be used to identify individual
users based on their gait after training and evaluating the data with deep learning
techniques [12]. The same applies for data that is collected by smartwatches.
In a study performed by Andrew Johnston and Gary Weiss, the authors show
that gait-based biometric identification is also possible with smartwatches [21].
Moreover, Häring et al. show that the pick up motion performed when picking up
a smartphone from a desk could be used in order to support user authentication
to the device, showing that the motion itself is highly depending on individual
characteristics [22, 23].

In contrast, we investigate to what extent it is possible to determine certain
user characteristics based on data collected while cycling. Matkovic et al. show
that is already possible to use the collected smartphone movement data in order
to infer the respective bike type [24]. In a later study, they further include the
detection of an e-scooter along with di↵erent bike types [25].

In comparison to the studies performed by Matkovic et al., we do not only ex-
plore bike type identification but also other characteristics, such as the gear, seat
height, and the terrain, which to the best of our knowledge have not been inves-
tigated before. Moreover, we do not only rely on data collected by a smartphone
like in other studies, but also consider data from smartwatches and investigate
the usefulness of these data to identify the di↵erent characteristics. Last but
not least, we also investigate whether it is possible to use the collected data to
distinguish users based on their individual cycling patterns.

3 Data Collection

In this section, we describe the methodology used in our user study. We out-
line the devices used for data collection, where the devices are placed with our
participants, how they are recruited, and the steps taken to comply with data
protection.

3.1 Used Devices

Firstly, we have decided to use smartphone and smartwatch data to collect the
movement data. Our decision is motivated by the fact that both devices are
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able to collect data at di↵erent positions on cyclists. While smartphones are
often located in trousers’ front/back pockets, a smartwatch is usually worn at
the wrist. The smartwatch thus allows us to gather additional knowledge about
users’ movements and increases the probability to successfully infer additional
characteristics about them and their context. The data collected by the smart-
watch is transferred to the smartphone via a Bluetooth connection, where it is
stored. We used a Google Pixel 4 and a Samsung Galaxy Watch (SM-R805F).
Both configured to collect the considered sensor data at 400Hz and 100Hz, re-
spectively. Pseudonyms were used to avoid the linking of the collected data to
the participants.

3.2 Data Protection and Ethical Aspects

Before starting the study, we have distributed a consent form to the participants
in order to inform them about both data collection and processing modalities
following the General Data Protection Regulation (GDPR). Note that our study
was submitted to the Data Protection O�cer of our institution. A verification
by the ethical board of our institution is however not mandatory in our field.
Nevertheless, we have limited the e↵orts for the participants to the minimum.
They have been informed that they could opt out at any time and that their
data would be removed. On average, each participant took about 30 minutes to
complete the study.

3.3 Recruitment

The participants were recruited within our social circle. Our recruitment strat-
egy, however, does not impact our results due to absence of subjective questions
in our study. The study took place between 14th of September 2021 and 14th of
December 2021. Every participant executed the task once.

Table 1: Observed characteristics
Dimensions Selected alternatives
Bike type Road bike, Mountain bike, Gravel bike, E-bike

Gear 15th, 21st
Seat height Low, Normal, High
Terrain Dirt road, Bike road, Stone road, Asphalt road

3.4 Smartphone and Smartwatch Placement

In order to have the same conditions for all participants, the smartphone was
located in the right front pocket of their trousers, upside down with the charging
port at the top and the screen facing away from the body. Furthermore, the
smartwatch was worn on their right wrist.
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3.5 Scenario, Dimensions, and Parameter Variations

To answer our research questions, we aim at exploring whether the collected data
can reveal information about five di↵erent dimensions: (1) the bike type, (2) seat
height, (3) gear, (4) terrain, and (5) the participant. For the first four dimensions,
we have selected di↵erent alternatives to define our ground truth as summarized
in Tab. 1. For the bike type, this means a road bike, a mountain bike, a gravel
bike, and an e-bike as displayed in Fig.1. For all bikes, the seat height can be
adjusted to low, normal, and high. We set the di↵erent seat heights by measuring
the distance between the centre of the chain set and the top of the seat resulting
in 60 cm for low, 85 cm for normal, and 95 cm for high. We further set the gears
to the 15th or 21st gear for the di↵erent runs. We finally considered di↵erent
terrains as depicted in Fig. 2: dirt road, bike road, stone road, and asphalt road.
For analysis of the fifth dimension, i.e., possible di↵erences between participants,
all participants have ridden the same bike on the same road for two km, only
the seat height has been adjusted depending on the participant. We have chosen
these dimensions because we presume that they have a direct impact on the
collected sensor data. Indeed, while bike type and seat height could a↵ect the
posture of the cyclist, gear could a↵ect pedaling speed, and di↵erent terrains
could create vibrations a↵ecting the collected movement data.

(a) Road bike (b) Mountain bike (c) Gravel bike (d) E-bike

Fig. 1: Bike types

(a) Dirt road (b) Bike road (c) Stone road (d) Asphalt road

Fig. 2: Terrains
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4 Data Processing

In this section, we describe our approach to process the data collected according
to the settings described in Sec. 3 in order to explore the di↵erent dimensions of
interest.

4.1 Preprocessing

We have first applied the following preprocessing step. Due to the high sampling
rate of 400 Hz, di↵erent readings share the same timestamp. We have hence first
distributed all timestamps evenly across all recordings following this function:

Let the set {T1, T2, T3, . . . , Tn} be the unrepaired timestamps. Then

Tnew(x) = T1 + x
Tn � T1

n

forx = 1, 2, . . . , n and whereTx is the xth recorded timestamp.x 2 N

4.2 Identification of Pedal Rotations

Like in gait recognition (see Sec. 2), we aim at first identifying repetitive pat-
terns. While such patterns are defined by two consecutive steps in the case of
gait recognition, we consider a single pedal rotation as a representation for the
periodic repetitions during pedaling. In order to detect such a pedal rotation,
we use the gyroscope data to identify the circular movement of the legs and
therefore the identification of one complete pedal rotation.

In a first attempt to detect the bounds symbolizing the start and the end of
a single pedal rotation, three options shown in Fig. 3 were possible: searching for
(1) local maxima (see Fig. 3a), (2) minima (see Fig. 3b), or (3) turning points
around the zero value whenever the value turns from negative to positive (see
Fig. 3c). Among these options, we have selected the zero point approach, shown
in Fig. 3c, because it turned out to be the most reliable approach to detect the
bounds of a single pedal rotation.

One of the main problems that occurred in the process of identifying a pedal
rotation was (1) that a non-pedal rotation is sometimes identified as a real pedal
rotation (type I error; false positive) and on the other hand (2) some pedal ro-
tations were not identified at all (type II error; false negative). When examining
our participants’ data, we notice that for some participants the turning point ap-
proach did not work as expected because the X-values oscillated above 0, leading
to false positives. To make our approach more reliable in correctly identifying
pedal rotations, we have further considered the Z values of the gyroscope data,
which have a similar pattern as the X values. By doing so, the identification of
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false pedal rotations due to the oscillation of the X values around zero can be
avoided. The principle behind this idea is that a new bound of a pedal rotation
is only detected if both X and Z values are positive, if at least one negative
value between X and Z was detected in the previous timestamp. The rotation is
considered as complete when at least one timestamp exists where both X and Y
values are negative.

Following this adjusted approach, we have eliminated all false positive pedal
rotations and obtained fewer false negative detected pedal rotations leading to
approximately 250 to 400 detected pedal rotations in rounds of 4 minute cycling
sessions. Even though we still have a few false negative pedal rotations this
scenario is highly preferred as false positive pedal rotations might have a bad
impact on the later classification of the characteristics.

(a) Smartphone gyroscope data - pedal rotation bounds by maxima

(b) Smartphone gyroscope data - pedal rotation bounds by minima

(c) Smartphone gyroscope data - pedal rotation bounds by zero point

Fig. 3: Pedal rotation bounds detection methods
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4.3 Feature Extraction

After the successful identification of the individual pedal rotations, we now focus
on feature extraction. Since all pedal rotations can di↵er in both length and
number of sensor readings, we need to find an approach that makes all pedal
rotations comparable. To solve this issue, we bin the sensor readings in a pedal
rotation by separating the readings in fixed intervals. In more details, we use
the start and end timestamps of a detected pedal rotation and calculate the
respective timestamp for every sensor reading in the pedal rotation that matches
our fixed interval following this function, where Ts is the first timestamp of a
pedal rotation and Te is the last timestamp of a pedal rotation:

Tx = Ts + x ⇤ Te � Ts

i� 1

We next determine the sensor value for each calculated timestamp. If a sensor
reading exists for this timestamp, we obviously use its value as the new value
for our bin. Otherwise, we apply the following linear interpolation with Ta the
timestamp before, Tb the timestamp after, Va as the value at Ta and Vb as the
value at Tb:

Vx = Va + (Vb � Va) ⇤
x� Ta

Ta � Tb

Fig. 4 illustrates how such a binning process looks like for di↵erent intervals
of 20 bins (see Fig. 4a) and 50 bins (see Fig. 4b). We hence follow this approach
in order to normalise the values for each individual pedal rotation with varying
lengths and number of readings.

(a) Smartphone gyroscope data - single
pedal rotation with bins marked (20)

(b) Smartphone gyroscope data - single
pedal rotation with bins marked (50)

Fig. 4: Smartphone gyroscope data - single pedal rotation with bins marked
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4.4 Classification

For the classification of the pedal rotations identified according to our approach
detailed in Sec. 4 according to the specific characteristics given in Tab. 1, we
explore and compare the following five machine learning algorithms: Gaussian
Naive Bayes (GNB), k-Nearest Neighbours (KNN), linear Support-Vector Clas-
sification (linear SVC), Decision Tree (DT) and Random Forest (RF).

To avoid under- or overfitting our models, we have tested di↵erent configura-
tions of our features. Since the binned sensor values are our most important fea-
tures, we have investigated how the performance of the machine learning models
changes depending on the size of our bins. In Figure 5, we see that performance
for all machine learning models increases as the number of bins increases, up to
25 bins. Just for the classification of the terrain and only for KNN we observe a
dramatic decrease in the rate of correct classification, while the number of bins
increases. Moreover, we notice that for the linear SVC performance degradation
occurs once the number of bins exceeds 40. Based on these results, we have
decided to select a number of 40 bins for further analysis.

(a) Fitting of bins to bike type (b) Fitting of bins to gear

(c) Fitting of bins to seat height (d) Fitting of bins to terrain

Fig. 5: Fitting of bins to characteristics

Except for GNB, all other algorithms have hyper parameters that need to be
tuned in order to reach the best performance. We have therefore run grid tests
with cross-validation and obtained the following set of hyper parameters:

– KNN: number of neighbours = 6
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– linear SVC: regularisation parameter = 1
– RF: maximum depth = 16; number of trees = 20
– DT: maximum depth = 5

Since the grid search for the optimal hyper parameters is quite computation-
ally expensive, we do not exclude that additional fitting of these hyper param-
eters can lead to even more accurate models and thus to a classification with
even a higher accuracy.

5 Results

To explore the best combination of features, we have run through all possibilities
with smartphone and/or smartwatch data available. This means 24 possible
combinations of the features minima/maxima, variance, and standard deviation.
We discuss the corresponding results in what follows.

5.1 Bike Type

For the detection of the correct bike type, we find that the best classification can
be made when considering the RF classifier, closely followed by linear SVC as
shown in Fig. 6. A more detailed insight shows that the overall best performance
can be achieved with the combination of all features maxima/minima, variance,
and standard deviation. In this case, we achieve an accuracy of 93.05%, shown
in Fig. 6a. In comparison, with the smartphone data only, the highest accuracy
is equal to 91.48%, as depicted in Fig. 6b. Moreover, we observe that the road
bike and the e-bike both with a precision of to 94% are the best classified types,
while the gravel bike is worst with 90%. The mountain bike and the road bike
are the two most likely bike types to be confused as shown in Fig. 7. Reasons
for the F1-Score being higher than the accuracy is most probably due to the
imbalanced nature of our dataset.

GNB KNN SVC RF DT
S M V S 66.99% 73.97% 91.47% 93.05% 75.28%
S M V - 64.61% 72.26% 92.53% 92.93% 76.44%
S M - S 62.88% 71.78% 92.26% 92.62% 75.62%
S M - - 65.99% 69.22% 91.25% 92.11% 78.15%
S - V S 66.47% 72.20% 89.64% 92.50% 77.05%
S - V - 64.37% 73.33% 91.28% 92.59% 77.54%
S - - S 66.47% 65.04% 91.77% 92.62% 77.08%
S - - - 65.50% 65.41% 89.61% 90.52% 76.68%

Features

(a) Performance with smartwatch data

GNB KNN SVC RF DT
S M V S 56.70% 88.14% 83.41% 90.36% 70.86%
S M V - 55.43% 87.36% 84.66% 89.63% 71.68%
S M - S 54.73% 86.48% 85.51% 91.48% 73.65%
S M - - 54.40% 86.14% 78.47% 89.75% 73.23%
S - V S 55.22% 86.66% 83.32% 89.96% 72.41%
S - V - 57.06% 87.11% 78.53% 90.05% 74.41%
S - - S 54.79% 84.32% 87.33% 89.36% 72.20%
S - - - 54.12% 84.87% 75.50% 88.36% 70.86%

Features

(b) Performance without smartwatch data

Fig. 6: Performance to infer bike type of all classifiers based on di↵erent com-
binations of features sensor data (S), maxima/minima (M), variance (V), and
standard deviation (S)
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(a) Bike type confusion matrix
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1.00
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(b) Bike type classification results

Fig. 7: Confusion matrix and classification report for the bike types of road bike
(RB), mountain bike (MB), gravel bike (GB), and e-bike (EB)

5.2 Gear

The classifier with the highest accuracy to infer the 15th and 21st gear is the
RF classifier, as shown in Fig. 8. The combination of features that results in the
best accuracy is represented by both the smartphone and smartwatch data in
addition with the maxima/minima and variance giving an accuracy of 92.23%,
shown in Fig. 8a. In comparison with the smartphone data only, we only achieve
an accuracy of 90.60%, depicted in Fig. 8b. In both cases the other observed
classifiers are not able to achieve accuracies that are higher than 90%. Moreover,
we observe that the precision and the recall are higher for the 15th gear, meaning
that the RF classifier is slightly skewed towards predicting this gear as shown in
Fig. 9.

GNB KNN SVC RF DT
S M V S 61.41% 78.76% 82.69% 91.65% 83.05%
S M V - 61.44% 78.48% 66.60% 92.23% 82.96%
S M - S 62.33% 72.60% 83.42% 91.59% 83.79%
S M - - 62.91% 73.03% 83.97% 90.46% 81.99%
S - V S 62.42% 78.36% 59.92% 91.44% 82.05%
S - V - 63.88% 78.67% 80.92% 91.34% 83.42%
S - - S 62.33% 71.87% 83.75% 91.31% 83.66%
S - - - 62.97% 72.23% 80.89% 90.12% 80.80%

Features

(a) Performance with smartwatch data

GNB KNN SVC RF DT
S M V S 77.26% 86.66% 83.78% 89.78% 84.23%
S M V - 75.59% 86.96% 79.14% 89.69% 82.23%
S M - S 75.44% 84.87% 81.23% 90.60% 83.38%
S M - - 74.59% 86.39% 82.08% 89.51% 80.87%
S - V S 76.11% 85.60% 88.87% 89.66% 82.72%
S - V - 74.62% 85.08% 82.02% 90.02% 82.87%
S - - S 75.74% 83.78% 85.08% 90.48% 83.14%
S - - - 73.32% 84.41% 65.16% 88.14% 80.56%

Features

(b) Performance without smartwatch data

Fig. 8: Performance to infer gear of all classifiers based on di↵erent combinations
of features sensor data (S), maxima/minima (M), variance (V), and standard
deviation (S)
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(a) Gear confusion matrix
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(b) Gear classification results

Fig. 9: Confusion matrix and classification results for the gears of 15 and 21

5.3 Seat Height

When observing the performance of all classifiers to infer the seat height, we see
that the best results are achieved by the RF classifier, closely followed by linear
SVC as shown in Fig. 10. We achieve a classification performance of 95.76% for
the seat height by using the RF classifier with the feature combination of both
smartphone and smartwatch data, maxima/minima, and standard deviation,
as shown in Fig. 10a. By excluding the smartwatch data we notice that the
classification results are still high and for some classifiers such as KNN and
DT even higher than using smartphone and smartwatch data in combination,
depicted in Fig. 10b. This shows, that the smartphone data are su�cient to
classify the seat height, while the smartwatch data in some cases even reduced
the classification performance. Moreover, we observe that normal and high seat
settings sometimes are confused with each other, while low and high almost
never get confused as shown in Fig. 11.

GNB KNN SVC RF DT
S M V S 72.75% 70.86% 93.20% 95.03% 82.78%
S M V - 70.77% 69.86% 92.38% 94.85% 83.42%
S M - S 71.65% 67.02% 90.03% 95.76% 83.72%
S M - - 72.63% 68.61% 92.47% 94.67% 83.69%
S - V S 71.35% 70.89% 91.95% 94.57% 82.69%
S - V - 72.48% 71.17% 93.45% 94.64% 82.41%
S - - S 70.98% 65.53% 92.81% 95.00% 82.57%
S - - - 72.75% 64.40% 93.17% 94.67% 81.93%

Features

(a) Performance with smartwatch data

GNB KNN SVC RF DT
S M V S 69.13% 94.85% 91.78% 94.24% 82.38%
S M V - 69.07% 94.24% 93.03% 95.21% 82.72%
S M - S 69.41% 94.06% 94.33% 95.51% 83.51%
S M - - 69.41% 94.03% 92.87% 95.15% 84.08%
S - V S 69.44% 94.51% 94.00% 94.97% 82.87%
S - V - 70.41% 94.00% 94.12% 95.33% 82.20%
S - - S 68.28% 94.15% 93.30% 94.88% 82.38%
S - - - 70.32% 94.39% 93.97% 94.51% 81.99%

Features

(b) Performance without smartwatch data

Fig. 10: Performance to infer seat height of all classifiers based on di↵erent com-
binations of features sensor data (S), maxima/minima (M), variance (V), and
standard deviation (S)
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(a) Seat height confusion matrix
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(b) Seat height classification results

Fig. 11: Confusion matrix and classification results for the seat heights of high
(H), low (L), and normal (N)

5.4 Terrain

For terrain detection, the RF classifier performed best, followed closely by the
linear SVC, as shown in Fig. 12. To achieve the highest accuracy of 94.24%, a
combination of all features: smartphone and smartwatch in addition with min-
ima/maxima, variance, and standard deviation is needed, as depicted in Fig. 12a.
By exploring the performances of all classifiers without the smartwatch data in
Fig. 12b, we see that the accuracies dropped more significantly in contrast to
the other dimensions such as the bike type, gear, and seat height when excluding
the smartwatch data. This confirms that di↵erent terrains especially a↵ect the
steering behavior as well as the shaking of the handle bars. As expected, we also
observe that bike road and asphalt terrains can get confused for each other as
shown in Fig. 13.

GNB KNN SVC RF DT
S M V S 78.36% 88.05% 91.95% 94.24% 91.80%
S M V - 78.27% 87.32% 89.91% 93.78% 90.98%
S M - S 77.63% 49.80% 82.11% 93.90% 90.73%
S M - - 78.67% 48.13% 84.36% 92.08% 87.56%
S - V S 78.94% 88.08% 90.49% 93.75% 91.28%
S - V - 78.21% 86.96% 85.71% 92.81% 90.61%
S - - S 78.63% 38.86% 85.89% 92.81% 90.83%
S - - - 76.96% 36.21% 70.13% 86.96% 72.42%

Features

(a) Performance with smartwatch data

GNB KNN SVC RF DT
S M V S 46.51% 74.20% 81.96% 89.48% 80.99%
S M V - 47.45% 74.80% 76.02% 88.48% 80.90%
S M - S 48.48% 73.32% 81.78% 89.36% 81.20%
S M - - 45.45% 72.47% 71.10% 85.81% 77.35%
S - V S 44.09% 70.71% 80.23% 88.36% 80.29%
S - V - 46.36% 71.98% 74.95% 86.11% 81.08%
S - - S 45.09% 69.92% 54.67% 86.60% 81.20%
S - - - 43.69% 68.37% 70.92% 81.84% 70.77%

Features

(b) Performance without smartwatch data

Fig. 12: Performance to infer terrain of all classifiers based on di↵erent com-
binations of features sensor data (S), maxima/minima (M), variance (V), and
standard deviation (S)
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(a) Terrain confusion matrix

0.00

0.20

0.40

0.60

0.80

1.00

DR BR SR AR

Precision Recall F1-Score Accuracy
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Fig. 13: Confusion matrix and classification results for the terrains of dirt road
(DR), bike road (BR), stone road (SR), and asphalt road (AR)

5.5 User Distinction

The classifier that worked out best to distinguish the participants of our user
study is the RF classifier, closely followed by the linear SVC and GNB, as shown
in Fig. 14. The highest accuracy of 99.01% resulted in a combination of the fea-
tures smartphone and smartwatch data in addition with variance and standard
deviation, depicted in Fig. 14a. When comparing those results with the per-
formances that are achieved without the smartwatch data, shown in Fig. 14b,
we see that the exclusion of the smartwatch data positively a↵ected the KNN
and linear SVC classifiers while it only slightly reduced the performance of the
RF classifier. Therefore, we want to state that the smartwatch data does not
drastically a↵ect the performance to distinguish our participants and that the
smartphone data alone is su�cient to distinguish our participants. The confu-
sion matrix and the classification report respectively depicted in Fig. 15a and
Fig. 15b show that there are no big confusions between the di↵erent participants.

GNB KNN SVC RF DT
S M V S 96.31% 82.84% 95.32% 97.21% 79.15%
S M V - 96.22% 79.80% 96.22% 98.11% 74.22%
S M - S 96.06% 81.77% 96.63% 98.44% 80.13%
S M - - 97.13% 81.61% 97.04% 98.60% 73.15%
S - V S 95.40% 80.79% 95.48% 99.01% 64.86%
S - V - 95.16% 81.61% 96.14% 98.60% 75.21%
S - - S 96.72% 78.57% 95.73% 98.03% 66.34%
S - - - 95.89% 80.62% 95.48% 98.52% 71.43%

Features

(a) Performance with smartwatch data

GNB KNN SVC RF DT
S M V S 92.35% 97.31% 98.21% 98.05% 69.49%
S M V - 92.03% 97.48% 98.05% 97.72% 66.48%
S M - S 91.38% 98.54% 98.86% 98.05% 73.80%
S M - - 91.46% 98.05% 98.05% 98.05% 70.06%
S - V S 91.94% 98.37% 98.05% 98.37% 64.77%
S - V - 90.40% 98.13% 98.45% 97.97% 69.73%
S - - S 91.46% 97.48% 98.13% 97.64% 67.78%
S - - - 91.29% 97.07% 98.45% 98.37% 73.80%

Features

(b) Performance without smartwatch data

Fig. 14: Performance of all classifiers based on di↵erent combinations of features
sensor data (S), maxima/minima (M), variance (V), and standard deviation (S)
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(a) User study confusion matrix (b) User study classification report

Fig. 15: Confusion matrix and classification report for the user study and our 17
participants

In summary, we have shown that it is possible to infer characteristics such
as the bike type, seat height, gear, and terrain when cycling by utilizing ma-
chine learning classifiers like RF and linear SVC. Besides the inference of those
characteristics, we further show that our participants can be distinguished from
each other by taking advantage of the data collected about our participants and
training a RF classifier.

6 Limitations and Outlook

Although we are able to correctly identify the characteristics discussed and also
show that we are able to identify our participants based on the collected move-
ment data, our results are based on a limited number of participants. As the
number of people increases, the accuracy in identifying individual users might
decrease. Moreover, our sample is not representative of the population. As a
result, it would be interesting in the future to explore the feasibility to infer in-
formation, such as the age or the gender based on the unique cycling movements.

Moreover, it would be interesting to investigate the impact of the placement
of the smartphone from the front pocket of the trouser to the back pocket, or
other usual locations, such as a backpack [26].

In our study, we have also only explored di↵erent terrains without major
decline or incline, which could be another interesting feature to observe in future
studies.

Furthermore, we would like to note that we have not considered other factors,
such as the weather or the way participants change directions with their bikes,
which could be other interesting aspects for future studies.

While we have focused on showing the feasibility of inferring di↵erent types
of information about our participants, their bike, and the terrain from move-
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ment data in this paper, we have left open, which solutions could be applied to
prevent such inferences, while still allowing the underlying fitness applications
to function.

An interesting direction to follow is how to communicate the resulting risks
to their privacy and make transparent which data are collected. Works in this
direction exist for smartwatches [2,27] or fitness trackers in general [28,29], but
they are dedicated to other contexts and do not cover specifically our biking
scenario. Similarly, the impact of applied privacy-preserving solutions on their
data could be communicated to the cyclists like it is the case for the application
of di↵erential privacy on health data [30–32]

7 Conclusion

In this study, we have explored the potential of the movement data, generated by
a smartphone and a smartwatch, to classify user as well as environmental char-
acteristics when riding a bike. The four characteristics we observe are the bike
type, gear, seat height, and terrain. Additionally, we examine on the potential
to distinguish/identify users from each other solely on their unique cycling be-
havior. To this end, we first created a dataset based on movement data collected
from a single person, representing all di↵erent combinations of the characteris-
tics. Then, we conducted a user study with 17 participants who were equipped
with a smartphone and a smartwatch and collected data while cycling for two
km on the same road for all participants.

The results show that the RF classifier performed best among all classifiers
that we have explored. Moreover, we were able to show that the smartwatch
data can increase the performance accuracy for most characteristics. Especially
for the detection of the terrain the smartwatch data increased the accuracy com-
pared to the smartphone data alone. Our results show that we achieve prediction
accuracies for our four characteristics bike type, gear, seat height, and terrain
of 93.05%, 92.23%, 95.76%, 94.24% respectively. Also in the user study we were
able to recognize a person from a crowd of 17 participants with a probability of
99.01%.

Overall, our results shed light on the performance of sensor readings collected
by devices we use every day to predict user-specific and environmental character-
istics. As a result, applications making use of these data can create fine-grained
user profiles that users are often not aware of. We therefore recommend to design
new user-friendly solutions, increase the transparency of the collected data, and
allow users to make informed decisions about their privacy.
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