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Abstract—Crowdsensing applications rely on volunteers to
collect sensor readings using their mobile devices. Since the
collected sensor readings are annotated with spatiotemporal
information, the volunteers’ privacy may be endangered. Existing
privacy-preserving solutions often disclose the volunteers’ loca-
tion information to either a central third party or their peers. As
a result, the volunteers need to trust these parties to respect their
privacy. In this paper, we present a distributed approach based on
the concept of multi-party computation, which does not require
a trusted party and protects the location information against
curious users. We evaluate the performance of our approach and
show its feasibility by means of extensive simulations based on a
real-world dataset. We further implement a proof-of-concept to
test its performance under realistic conditions.

I. INTRODUCTION

Current mobile devices, such as smartphones and tablets,
are ubiquitous and offer an increasing number of resources
and embedded sensors. The combination of these aspects has
led to the emergence of multiple sensing paradigms, such as
participatory sensing [2] and mobile crowdsensing [11]. These
paradigms share the same underlying concept leveraging vol-
unteers to collect sensor readings with their personal devices.
Without loss of generality, we therefore use the generic term of
crowdsensing to designate such applications in the remainder
of this paper. Based on this concept, a myriad of applica-
tions have already been proposed, ranging from documenting
participants’ health conditions to monitoring their surrounding
environment [9].

A challenge in these applications is the protection of the
participants’ privacy because the participants report the col-
lected sensor readings along with spatiotemporal information
to the application server [9]. Crowdsensing administrators
hence gain access to the participants’ whereabouts during the
collection campaign. This information can lead to the inference
of additional sensitive insights about the participants, such as
their medical state based on frequent visits to hospitals or
political views when attending political meetings [35].

Different mechanisms have been presented to protect the
participants’ location privacy. These mechanisms however re-
quire the participants to reveal their locations either to a central
third-party or to other participants. Participants hence need
to trust these parties not to either accidentally or voluntarily
breach their privacy. Within the scope of this paper, we propose
a novel approach that protects participants’ location privacy
independently of their degree of trust in other parties.

Our contributions can be summarized as follows:
• We present an OPPortunistic Privacy-Preserving (OP4)

scheme based on secure multi-party computation [39].
In OP4, participants located in physical proximity can
identify and construct common geographical areas with-
out disclosing their original locations. By reporting such
areas instead of their individual locations, the participants
protect their location privacy against curious campaign
administrators. Nevertheless, this protection is only en-
sured if the involved participants cooperate and actually
report the same area to the application server. We there-
fore use the concept of secret sharing [33] to guarantee
that campaign administrators only have access to the
constructed area if a sufficient number of participants
have reported it.

• We conduct a thorough threat analysis showing the ro-
bustness of OP4 against privacy threats.

• OP4 is a distributed scheme that relies on opportunis-
tic physical encounters between participants. We there-
fore explore its feasibility by undertaking a detailed
simulation-based analysis based on a real-world dataset
and especially compare its performance against a central-
ized solution.

• We further evaluate the feasibility of our approach by
implementing a proof-of-concept on Android Nexus 6
mobile phones and measure the incurred overheads.

The paper is organized as follows. In Sec. II, we discuss
related work. We introduce our assumptions and models in
Sec. III and present OP4 in Sec. IV. We conduct a multi-
dimensional evaluation in Sec. V, before making concluding
remarks in Sec. VI.

II. RELATED WORK

Crowdsensing applications can threaten the participants’
privacy at different levels, ranging from the distribution of
sensing tasks to the presentation of campaign results as shown
in [3], [9]. While methods to protect the anonymity of the
participants have been proposed in, e.g., [8], we focus in this
work on threats to location privacy caused by the reporting of
spatiotemporal annotations to the application server.

To address this issue, existing approaches consider either
individual locations or trajectories [3]. Since OP4 concentrates
on individual locations, we especially compare our solution to
similar approaches. In addition to local mechanisms applied

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

rst
Textfeld
Delphine Reinhardt, Ilya Manyugin: OP4: An OPPortunistic Privacy-Preserving Scheme for Crowdsensing Applications. In: Proceedings of the 41st IEEE International Conference on Local Computer Networks (LCN), pp. 460-468, November 2016.



on the participants’ device (such as applied in [7]), most
approaches are based on the concept of k-anonymity [36]
and aim at finding k participants sharing a same region.
By sharing and reporting the same region, the k participants
become indistinguishable for the campaign administrators. The
challenge is thus to find k users and compute the associated
region. To this end, different proposals have been made. The
first option is to use a central trusted third-party (TTP),
which is in charge of building user groups and generating
the respective region based on the original locations reported
by the participants. Different variants of centralized solutions
have been introduced in [12], [14], [37], [32]. However, these
solutions require participants to disclose their true locations to
the TTP. Participants hence need to trust the TTP to respect
their privacy, but have no guarantees.

Instead of trusting a third-party, distributed approaches
based on collaborating participants have been proposed. For
example, users of location-based services can collaborate to
protect their privacy by locally caching the server’s answers
to their queries. As a result, participants only disclose their
location when the queries are not answered yet. Alternatively,
participants can collaborate to protect their privacy by, e.g.,
exchanging collected sensor readings in [5], [6] or find k − 1
other participants and construct a commonly shared region
based on either direct ad hoc communication [13], [22] or
supported by a peer-to-peer infrastructure [17]. Again, the
participants need to disclose their original locations to other
participants. When compared to the previously described
centralized solutions, the trust issue is not solved, but only
distributed to more parties. In contrast, OP4 is a distributed
scheme that leverages cooperation between participants to
compute a shared region based on ad hoc communication
between devices. The key difference to the above schemes
is that participants’ locations are compared without being
disclosed. Our work is an extension of our previous work [4],
but differs in (1) the adopted communication models, (2) the
methods applied to build common regions, (3) the conducted
simulations, and (4) the datasets used in our simulations.
Moreover, no proof-of-concept implementation is proposed in
our previous work.

III. ASSUMPTIONS

We make the following assumptions regarding our system
model and the related threats to privacy.

A. System Model

We assume a delay-tolerant crowdsensing application, such
as a noise pollution monitoring application. Participants iden-
tified by a unique identifier ID collect sensor readings at a
given sampling frequency. Each collected sensor reading s is
annotated with the time t and the location l of its collection,
thus forming a triplet T = 〈t, l, s〉. We further assume that the
participants’ mobile phones referred to as clients can establish
ad hoc communication when located in physical proximity.
The collected triplets are reported to the application server,
where they are processed, before being presented to end users.

All participants and the application server own a public/privacy
key pair.

B. Threat Model

We assume a honest-but-curious adversary model, in which
campaign administrators attempt to passively breach the par-
ticipants’ privacy based on their reported triplets. They run
the system normally and faithfully, but do not launch active
attacks to obtain further information. Due to the distributed
nature of OP4, participants also become possible adversaries,
who are potentially interested in inferring other participants’
whereabouts. Like for the campaign administrators, we assume
that participants are honest-but-curious. Note that campaign
administrators and participants do not collaborate to launch
colluding attacks.

IV. OP4 ARCHITECTURE

We first provide an give a high-level overview of the OP4

architecture illustrated in Fig. 1, before detailing the under-
lying mechanisms applied in OP4 in Sec. IV-B. We assume
that the participants follow the system model introduced in
Sec. III-A.

A. Overview

The system’s typical operation is as follows. Each par-
ticipant i collects a set of triplets {T i

j = 〈tij , lij , sij〉|1 ≤
j ≤ n, j ∈ N} annotated with spatiotemporal information.
n is the total number of triplets collected by i. Let us
assume that N participants are in physical proximity (i.e.,
within communication range) during the collection process.
They collaborate to build a common region r including at
least k participants and report this region instead of their
original location to the application server. By doing so, they
ensure their location k-anonymity. When compared to existing
schemes, each participant however does not reveal her original
locations to the N − 1 other participants. To this end, the N
participants initiate a secure Multi-Party Computation (MPC)
protocol based on garbled circuits as detailed in Sec. IV-B1.
This cryptographic protocol allows the N participants to
intersect the set Li = {(tij , lij)|1 ≤ j ≤ n, j ∈ N} of their
visited locations while keeping them secret. A set element
(i.e., a visited location) is only disclosed to the participants if
it is shared between them.

Given that a set element (t, l) is found to be common to at
least k of the N users, a function is applied to generalize the
found location to a common region r of radius d shared by
the k users. The k users next replace their original location
by the computed region r in the triplets to be reported to
the application server. To ensure their location k-anonymity,
all k users must report their collected sensor readings using
this region. Instead, the participants apply a secret sharing
algorithm detailed in Sec. IV-B2. In short, each participant
encrypts her collected sensor readings and splits the result into
m > k shares. She keeps one share for herself and distributes
the remaining shares to the k−1 users. After a timeout Tsecret,
the k participants report their own share as well as those
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Fig. 1. Overview of the OP4 architecture given N=2. We assume that the
generator reports its sensor readings with generalized locations after Treport,
while the evaluator discard them

from the remaining participants for each shared location. The
application server is only able to decrypt the reported sensor
readings when k shares are reported. This property guarantees
the participants’ location k-anonymity.

The remaining elements, i.e., those that are not shared
with others, are retained by the participants to be compared
with other participants at future opportunistic encounters. In
absence of encounters, the triplets are either suppressed or
their location is individually generalized before being reported
to the application server after a timeout Treport. The decision
between suppression and generalization is made by the par-
ticipants at the beginning of the collection process depending
on their individual privacy preferences.

In summary, participants can control their privacy protection
by tailoring the following parameters to their preferences:
Nmin the minimum number of participants in physical prox-
imity needed to initiate a MPC protocol, kmin the minimum
number of participants sharing the same location, and dmin

the minimum radius of the generalized region around their
original locations.

B. Underlying Mechanisms

1) Secure Multi-Party Computation: To compare their loca-
tions without disclosing them, the participants leverage secure
computation based on garbled circuits, as introduced in [39].
Its goal is to allow two parties to compute the output of a
function f based on the inputs of both parties but without
each party learning the input from the other. To this end, one
of both parties referred to as circuit generator first translates
f into a Boolean circuit composed of binary gates, each of
them being connected by wires. For each gate, the following
operations are conducted. To illustrate them, we choose an
AND gate as example. The gate has two input wires, x and

y, and one output wire z as illustrated in the gate truth table
in Tab. I(a).

a) Garbled Circuit Creation: The generator first asso-
ciates two random secret cryptographic keys (K0

w, K1
w) to the

respective value of each wire. Tab I(b) shows the resulting key
distribution. It then computes the corresponding gate outputs
by encrypting them using the aforementioned keys as shown
in Tab. I(c). The resulting encrypted outputs are then shuffled
and build a so-called garbled gate, which is part of the garbled
circuit. Tab. I(d) shows an example of a corresponding garbled
circuit, assuming that the garbled circuit contains a unique
AND gate, i.e., f is an AND gate.

b) Garbled Circuit Transmission: The constructed gar-
bled circuit is sent to the second party referred to as circuit
evaluator along with the mapping between the input values
and the output-wires keys illustrated in Tab. I(e).

c) Garbled Circuit Evaluation: The evaluator needs the
input-wire keys, i.e., (K0

x, K1
x) and (K0

y , K1
y ). To this end, a

one-out-of-two oblivious transfer (OT 1
2 ) [10], [30] is initiated

for each wire w. In each transfer, the generator inputs the two
corresponding keys K0

w and K1
w, while the circuit evaluator

inputs a selection bit b ∈ {0, 1}. The result vbw is then
communicated to the evaluator. As a result, the inputs remain
secret, i.e., b is kept secret from the generator and K¬bw from
the evaluator, except if the function output reveals them. For
example, the output of an AND gate reveals the inputs when
it is equal to 1. The evaluator finally evaluates the circuit by
decrypting the garbled truth table (see Tab. I(d)) using the
input-wire keys obtained in the oblivious transfers and the
mapping transmitted by the generator (see Tab. I(e)).

Consequently, any function f can be translated into a gar-
bled circuit based on binary gates, the output of one gate being
one of the inputs of the following gate. To reduce the commu-
nication and computation overheads, different optimizations
can be applied to the original scheme, such as the point-
and-permute technique [25], free-XOR technique [20], or the
garbled row reduction [28] scheme. Moreover, the two-parties
scheme detailed above can be extended to include additional
parties. The design and optimization of secure multi-party
computation schemes, however, are beyond the scope of this
manuscript.

2) Secret Sharing Algorithm: To ensure the participants’
location k-anonymity, we apply the concept of secret shar-
ing [33] using an erasure coding function [29] and articulated
into three main steps.

a) Shares Creation: The first step is conducted by each
participant having a triplet T ′ = 〈t, r, s〉, with r being the
generalized location shared with k other users. The triplet is
first divided into k shares, which are then transformed into
m > k shares by applying an erasure coding function g [31].
Erasure coding allows the application server to reconstruct
each triplet as soon as k of the triplet’s shares are available at
the application server. This caters for missing shares caused
by, e.g., transmission errors during the exchange or reporting
process or participants opting out. A tag is next appended
to each share to later allow the application server to identify



TABLE I
GARBLED CIRCUIT CONSTRUCTION FOR THE BOOLEAN AND GATE

(a) Gate truth
table

x y z

0 0 0

0 1 0

1 0 0

1 1 1

(b) Wire’s keys
x y z

K0
x K0

y K0
z

K0
x K1

y K0
z

K1
x K0

y K0
z

K1
x K1

y K1
z

(c) Encrypted truth table
x y z

0 0 EK0
x
(EK0

y
(K0

z ))

0 1 EK0
x
(EK1

y
(K0

z ))

1 0 EK1
x
(EK0

y
(K0

z ))

1 1 EK1
x
(EK1

y
(K1

z ))

(d) Garbled truth table
x y z

1 1 EK0
x
(EK0

y
(K0

z ))

0 0 EK0
x
(EK1

y
(K0

z ))

0 1 EK1
x
(EK0

y
(K0

z ))

1 0 EK1
x
(EK1

y
(K1

z ))

(e) Mapping table
x y z

0 0 K0
z

0 1 K0
z

1 0 K0
z

1 1 K1
z

shares reported by different participants, but belonging to the
same triplet. The tag is the result of a cryptographic hash
function h applied to a generated random nonce and the
corresponding participants’ identifier ID. In order to protect
the participant’s privacy against eavesdroppers and malicious
participants, each share concatenated with the generated tag
is encrypted using the public key of the application server
kpub/server. The resulting shares are hence:

T ′′i = Ekpub/server
(g(T ′)||h(ID, nonce)), ∀0 ≤ i ≤ m (1)

b) Shares Exchange: Each participant keeps one of the
m created shares and exchange the remaining with the k other
users involved in the encounter.

c) Shares Reconstruction: We assume that the partici-
pants report both their own shares as well as those received
from other participants to the application server. The applica-
tion server decrypts each reported share T ′′i with its private
key kpri/server:

Dkpri/server
(T ′′i ) = g(T ′i ||h(ID, nonce)) (2)

Then, it checks whether additional shares with the same tag,
i.e., h(ID, nonce), have already been decrypted. If k shares
are available, the original triplet is decoded using the decoding
function g−1 of the applied erasure coding scheme.

V. EVALUATIONS

We conduct a multidimensional evaluation of OP4. First,
we analyze the protection offered by OP4 to participants when
considering our threat model introduced in Sec. III-B. We then
quantify the performance of OP4 and compare them to those
of a centralized approach. We finally measure the introduced
overhead using our prototypical implementation.

A. Threat Analysis

In what follows, we discuss the resilience of OP4 against
different attack scenarios and hence offer the following pro-
tection to the participants of crowdsensing applications.

1) Protection against Honest-but-Curious Campaign Ad-
ministrators: They are curious about the participants and
their visited locations. However, they do not launch active
attacks to gain access to this information. Assuming that a
participant has encountered no other OP4 participants during
Treport (i.e., the given validity period of the collected sensor
readings), she either reports her sensor readings by cloaking

her exact locations or discards them depending on her personal
privacy preferences. Additionally, the secret sharing algorithm
guarantees that k users have reported their sensor readings
collected in the same region, thus ensuring their location k-
anonymity. It also breaks the link between the collected sensor
readings and the identity of the participants having collected
them. As a result, the campaign administrators do not gain
access to the original and exact locations of the participants.
The degree of privacy protection depends on the number of
k encountered participants and the applied cloaking scheme,
i.e., the size of the generalization area.

2) Protection against Honest-but-Curious Participants:
Participants collaborate in OP4 to protect their privacy. Due
to the MPC application, the participants do not reveal their
locations to each other in the comparison process. Only if
participants have locations in common, the MPC algorithm
will disclose them to the respective participants in order to
compute the common cloaked region. In this case, the protec-
tion depends on the applied MPC approach, especially on the
oblivious transfer protocol implementation. Well-established
oblivious transfer protocols are usually secure against honest-
but-curious parties ([25], [15]). For example, a trivial imple-
mentation of an oblivious transfer is proposed in [25], in
which two parties A and B are involved. A first generates
two messages for B: (1) a public key kpub of a public/private
key pair she knows and (2) a random string s. B then encrypts
both messages using the original messages as key. The results
Ekpub

(kpub) and Es(s) are sent back to A. As a result, A
is only able to decrypt one of both results. Note that more
complex implementations can be adopted to ensure protection
against malicious participants launching active attacks is also
possible in oblivious transfers as proposed in [23], [26], [24],
[34]. This additional protection, however, leads to increased
overheads.

In summary, OP4 protect the participants’ location privacy
against both honest-but-curious participants and campaign
administrators.

B. Performance

We next measure the performance of OP4 based on exten-
sive simulations.

1) Settings: We use the Mobile Data Challenge (MDC)
dataset as underlying participants’ mobility model [19], [21].
It contains the mobile phone data of 185 participants collected
between September 2009 and March 2011 in Switzerland.



Algorithm 1 Spatial preprocessing algorithm
Require: li: location at time ti,

li+1: location at time ti+1,
li+2: location at time ti+2,
δti+1−i = ti+1 − ti: time difference,
∆T : decision threshold,
nT : total number of triplets

for each iteration i with i ∈ [1, nT ] do
if i = 1 or δti+1−i ≥ ∆T then

li=li . Start point S: unmodified
else if i+ 1 = nT or δti+2−i+1 ≥ ∆T then

li=li . End point E: unmodified
else if δti+1−i = 0 then

li =
li−1+li+1

2
. Duplicate D: replaced

else
li =

δti−i−1·li−1+δti+1−i·li+1

δti−i−1+δti+1−i
. Midpoint M : replaced

end if
end for

In total, 11,035,020 GPS samples are available during this
period (after having removed duplicates). The number of daily
collected GPS samples ranges between 812 and 49,294 (mean
µ=19) involving three to 101 participants (µ=59).

We normalize the GPS samples using an interval of 5s, as
the sampling rate depends on the device’s battery level and
hence, is not uniformly distributed. To this end, we preprocess
the GPS data by applying a binning technique, i.e., replacing
each value within a bin by the time corresponding to the bin’s
lower bound as illustrated in Fig. 2(a) and Fig. 2(b). To reduce
the spatial errors introduced by the temporal preprocessing, we
apply Alg. 1. The algorithm first distinguishes the category of
each GPS sample between: (1) a starting point S of a new
trajectory, (2) a duplicate D (i.e., different participant’s loca-
tions in the same bin), (3) a midpoint M within a trajectory,
or (4) an end point E terminating a trajectory. Depending
on the identified category, the original sample is either kept
or modified. The labels in Fig. 2(b) illustrate the recognized
categories for different samples, while Fig. 2(c) shows the
resulting samples after the application of the spatiotemporal
transformation. Finally, Fig. 2(d) visualizes the differences
between the original and transformed trajectories.

To identify encounters of at least k users, we further apply
Alg. 2 to the preprocessed dataset. The algorithm first relies
on the construction of a multi-dimensional space partitioning
Ball Tree structure [27], [18]. The constructed Ball Tree is then
queried for each sample’s neighbor with the communication
range as query radius. The list of neighbors is reduced to
optimize the resulting cluster size and avoid that samples
belong to more than one cluster. As a result, the algorithm
generates a set of n clusters containing at least k users.

2) Results: We investigate and comment on the perfor-
mance of OP4 depending on different configuration param-
eters.

a) Number of Encounters: Participants can set the min-
imal number Nmin of other participants involved in an en-
counter to start the MPC protocol. The larger the number,
the higher the probability to find participants sharing the

Algorithm 2 Spatial Clustering
Require: L: set of locations li,

rcom: communication range,
k: minimum number of users in a group

tree ← BallTree (L); . Construct a BallTree object
neighbors ← tree.query radius(L, dcom); . Get the nearest
neighbors within rcom for each li
neighbors sets ← list(set(s), ∀s in neighbors);
intermediate clusters ← list();
for i← 0 to length(neighbors sets) do . Find the minimal
neighbors’ subset

l← neighbor sets[j], ∀j ∈ neighbor sets[i]; . Get the list of
current neighbors’ neighbors

group ←
⋂
x∈l x; . List reduction by set intersection

if length(group) ≥ k then
intermediate clusters.append(group);

end if
end for
assigned nodes ← set();
final clusters ← list();
while length(intermediate clusters) > 0 do

max ← a cluster of maximal size;
if max < k or length(assigned nodes) = length(L) then

break;
end if
reduced group ← max \ assigned nodes; . Inclusion of

locations not in another cluster yet
end while
if length(reduced group) > k then

final clusters.append(reduced group);
assigned nodes ← assigned nodes ∪ reduced group;

end if
intermediate clusters ← intermediate clusters \ max;
groups←

⋃
s∈final clusters;

same location and hence, the better for the privacy protection.
Simultaneously, the larger the number, the lower the prob-
ability that such encounter happens. Additionally, the MPC
protocol consumes resources as shown in Sec. V-C. Hence,
a Cool-down Time CT between two consecutive executions
(i.e., encounters) is necessary to save battery lifetime. We
therefore explore based on the above simulation settings the
impact of both N and CT on the number of encounters. To
this end, we assume that the ad hoc communication between
the participants is based on either Bluetooth or Wi-Fi and is
possible within a range of 100 meters [1].

Fig. 3 demonstrates the feasibility of our approach, as
participants are involved in more than 100,000 meetings for
N = 2 and CT = 5s. As expected, we observe that increasing
N significantly reduces the number of meetings. Note that
no meetings happen for N ≥ 6. The value of CT especially
impacts the number of encounters for CT ≤ 500s. For greater
CT values and the same N value, the number of meetings
remains almost constant. This can be explained that the greater
CT , the lower the probability that participants located in the
same area will stay and be involved in further meetings.

b) Number of k-anonymous Locations: The participants
can collaborate to protect their locations if (1) they are in
physical proximity and (2) share a common visited location.
This physical proximity requirement adds an additional con-
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down time CT on the number of identified encounters

straint as compared to a centralized solution, which is an
optimal solution as the third-party knows all exact participants’
locations and can hence construct the greater number of k-
anonymous locations due to its global view. In contrast, the
participants have only a local view restricted to the number
of encountered participants in OP4. We therefore expect OP4

to identify a lower number of k-anonymous locations as
compared to a centralized approach. To quantify the difference
between OP4 and a centralized approach, we run Alg. 2 to
build clusters of at least k users within a given range to
simulate a centralized solution.

We present the ratio of the number of k-anonymous loca-
tions identified using OP4 over the same number identified
with the centralized approach in Fig. 4. For our simulations,
we choose the cool-down time CT = 5s, the data validity

time Treport = 24 hours, i.e., the time after which the sensor
readings are either individually reported to the server after
local cloaking or discarded depending on the participants’
preferences. We vary the required number of participants per
meeting N , the minimum participants’ number k necessary
to release a common location, and the range within which
the participants should be to share the same location in the
centralized approach.

For N ≤ k and a range of 100 m, our approach shows
almost the same number of k-anonymous locations than a
centralized solution. For all k and N values, the performance
degrades when the given range augments. In these cases, the
centralized solution outperforms ours, as additional clusters
can be built between users that did not meet according to
our conditions. A similar observation can be made when
k < N . The centralized approach is able to identify more
participants within the same range as compared to OP4, which
first requires a meeting between at least N participants. Again,
the greater N , the more difficult to find potential meeting
candidates. Similarly, the greater k, the more difficult to find
participants to build a group in the same region. As a result,
the performance of the centralized approach diminishes with
an increase of both N and k, converging to the performance
of OP4.

c) Reporting Overhead: By design, the participants shar-
ing a common location divide the triplets to be reported into
shares according to the secret sharing algorithm detailed in
Sec. IV-B2. The division is based on the number of participants
involved in the process and the number of shares m > k
generated by the participants. Each participant keeps one of
her own shares and distributes the remaining to the others.
We have therefore measured the introduced overhead for the
participants, i.e., the number of exchanged shares reported to
the application server as compared to the initial number of
collected sensor readings. In almost all cases, the overhead is
zero for the participants meaning that the shares are equally
distributed between all participants. In very few cases, one
participant needs to report more sensor readings than in
absence of OP4. This happens, e.g., when a participant has
only one location common to the others, while the k−1 other
participants have many locations in common, thus generating
many more shares than her own. Thus, the shares’ reporting
process remains fair for a majority of participants.

In summary, we have shown based on a real-world dataset
that participants are able to compare their locations based on
ad hoc communication and find common locations to build
a shared region with a reporting overhead evenly distributed
between them. As a result, we have confirmed the feasibility
of our approach.

C. Proof-of-Concept

We have built a prototypical implementation of OP4 to
quantify the incurred resource consumption for the participat-
ing devices. Our proof-of-concept is based on the two-party
computation framework tailored to mobile devices proposed
in [15]. We hence leverage an existing garbled circuit for



0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

2 3 4 5 

L
oc

at
io

n 
k-

an
on

ym
ity

 r
at

io
 (%

) 

k 

d=100m d=250m d=500m d=750m d=1,000m 

(a) N=2

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

2 3 4 5 

L
oc

at
io

n 
k-

an
on

ym
ity

 r
at

io
 (%

) 

k 

d=100m d=250m d=500m d=750m d=1,000m 

(b) N=3

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

2 3 4 5 

L
oc

at
io

n 
k-

an
on

ym
ity

 r
at

io
 (%

) 

k 

d=100m d=250m d=500m d=750m d=1,000m 

(c) N=4
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Fig. 4. Impact of the number N of participants involved in meetings, the number of k participants sharing the same location, and the radius d on the ratio
of k-anonymous locations released by OP4 as compared to a centralized approach
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(b) Generator

Fig. 5. Impact of the set size Φ and the element size λ on the amount of generated traffic by the evaluator and generator, respectively

set intersection and have adapted it to run on two Nexus
6 phones featuring Android operating system version 5.1.1.
Each device has quad-core CPUs with a clock speed of 2.7
GHz, 3 GB of RAM and 64 GB of internal memory. To
balance the computing load between the devices, each device
alternatively plays the role of generator and evaluator in the
MPC algorithm (see Sec. IV-B1). Using our prototype, both
devices can discover each other and compare two sets of
different sizes to find common elements without disclosing
them. The length of each set element depends on the appli-

cation scenario. In our case, we assume that the timeout for
reporting data Treport is 24 hours. This means that all data
are reported to the application server exclusively within this
period. Moreover, we adopt a sampling rate of 5s common
to all contributing users, allowing us to encode the timestamp
over 11 bits. The location, i.e., latitude and longitude, can
be encoded using 26 bits when reducing the accuracy to 1
m. As a result, each set element, i.e., time and location, can
be encoded using 64 bits. Alternatively, both participants can
first disclose and compare their timestamps, before starting
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Fig. 6. Impact of the set size Φ and the element size λ on the execution
time

the MPC algorithm to compare their locations in case of
common timestamps. This would reduce the set intersection
to 32-bit elements. To also cater for additional scenarios,
we hence present the performance of our proof-of-concept
implementation for set elements of lengths: 16, 32, 64, and 128
bits. Note that additional methods to optimize the selection
of the set elements to be compared in the MPC protocol
could be proposed, e.g., based on the population density at
the collection locations in order to further reduce the incurred
overheads. Their design is however considered as future work.

1) Communication Overhead: We first measure the traffic
generated by the generator (see Fig. 5(b)) and the evaluator
(see Fig. 5(a)), respectively. To this end, we vary the set size Φ
(i.e., the number of compared elements) as well as the element
length λ. As a result, we observe that comparing two sets
of 50 64-bit elements generates 10.54 MB of traffic in total.
This includes 0.17 MB generated by the evaluator and 10.37
MB generated by the generator. The traffic difference between
both entities is caused by the task asymmetry between both
roles. Recall from Sec. IV-B1 that the generator is responsible
for generating the garbled circuit and then for transmitting it
to the evaluator. In contrast, the evaluator only evaluates the
transmitted circuit and sends the results back to the generator.
In this case, the data transmission hence takes around 3s for
participants communicating via Bluetooth version 4.0 and 0.3 s
for participants leveraging a Wi-Fi direct communication [38].

2) Execution Time: We finally measure the execution time
for different values of Φ and λ. The execution time includes
(1) the computation of the set intersection, (2) the transmission
of the garbled circuits to the evaluator, and (3) the transmission
of the results from the evaluator to the generator. Fig. 6 shows
the mean computation time for one intersection computed over
50 runs (SD=3.5s). The runs are equally distributed between
battery-powered and AC-powered devices. Based on our above
assumptions, the execution of a comparison of two sets of ten
64-bit elements takes approximately 100s. Nevertheless, the
obtained values highly depend on the memory management in
the Android operating system. To further reduce the execution
time, the MPC framework detailed in [15] should be optimized

by explicitly managing the memory in order to avoid interrup-
tions introduced by the garbage collector. Such improvements
are considered as future work.

VI. CONCLUSIONS

We have presented a distributed approach based on op-
portunistic encounters between participants of crowdsensing
applications. Our approach called OP4 protects the location
privacy of participants reporting sensor readings to the appli-
cation server. As compared to existing work, the participants
do not need to trust any other parties in OP4 to protect their
privacy, as their locations are only revealed to the participants
also sharing them. These participants then collaborate to report
their sensor readings to the application server and prevent
the campaign administrators from inferring their originally
visited locations. We have evaluated OP4 based on a real-world
dataset serving as underlying mobility model for potential
participants. We have first shown its feasibility and compared
our approach to a centralized solution. Additionally, we have
built a proof-of-concept implementation to validate our ap-
proach. In the future, different optimizations could be applied
to further reduce the resource consumption of the proposed
scheme. This includes an improved explicit management of
the memory in the MPC framework proposed in [15] and used
in our prototype implementation. Moreover, more efficient
MPC algorithms, such as [40], [16], could be integrated in
the framework. Finally, an optimized scheme to encode the
spatiotemporal information could be applied in order to reduce
the length of the set elements to be compared.
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