

- a mature commercial oil palm plantation.
- Identify atmospheric and environmental drivers of N₂O fluxes.

Parameter	Sensor	Instrument height or depth
N ₂ O fluxes and water vapor	N ₂ O/CO Analyzer (Los Gatos Research)	22 m
Wind speed & direction	uSonic-3 Scientific (METEK GmbH)	22 m
Water vapor and CO ₂ fluxes	LI7500A (LI-COR Inc.)	22 m
Soil moisture and soil temperature	TRIME-PICO32 (IMKO GmbH)	-5 cm
Radiation	CNR4 (Kipp & Zonen)	22 m
Photosynthetically active radiation	PQS1 (Kipp & Zonen)	22 m
Air temperature & humidity	Thies Clima	22 m
Precipitation	Thies Clima	11.5 m
Throughfall	Mini flowmeter (B.I.O-TECH e.K.)	1.5 m

- Concentration of N₂O and water vapor, sonic temperature and wind components *u*, *v* and *w* were sampled at a rate of 10 Hz. Fluxes were calculated for 30-minute intervals using the EddyPro 6.2.0 software package. Standard flux processing and data quality checks have been performed. No gap filling has been applied.
- Climatic variables were measured every 15-s and averaged to 10- and 30-minute intervals.

What drives ecosystem nitrous oxide (N₂O) greenhouse gas fluxes in a mature commercial oil palm plantation?

Christian Stiegler (1), Ashehad Ashween Ali (1), Tania June (2), Alexander Knohl (1) (1) Bioclimatology, University of Göttingen, Göttingen, Germany; (2) Department of Geophysics and Meteorology, Bogor Agricultural University, Bogor, Indonesia

- N₂O fluxes show no distinct difference between dry and wet season (**Fig. 2 a & Fig. 3**).
- Diurnal N₂O fluxes are negative (N₂O uptake) during the night, with average night-time (18:30-06:00 h local time) N_2O flux of -20.16 (±2.53 standard error) μ g N_2O-N m⁻² h⁻¹, and positive (N_2O uptake) during the day, with average day-time (06:30-18:00 h local time) fluxes of 87.05 (\pm 3.04 SE) µg N₂O-N m⁻² h⁻¹ (**Fig. 3 & Fig. 4**). N_2O fluxes reach their peak in the early afternoon (**Fig. 3**).

- throughfall (h) and throughfall rate (i).
- sensible heat flux (Fig. 5 g).
- The total amount of throughfall and throughfall rate has no impact on N_2O fluxes (**Fig. 5 h, i**).

Summary and outlook

- Day-time eddy covariance-based N_2O emissions are up to two times higher compared to chamber-based measurements from an earlier study at the same oil palm plantation (Hassler et al. 2017) (Fig. 4).
- be related to light- and humidity-dependent plant internal gas transport through N₂O-root assimilation, leaf transpiration and plant internal N_2O production (**Fig. 4**).
- by microbial activity or anaerobic denitrification but also terrain-related vertical advection or drainage flow (Cowan et al., 2014).

References

Hassler, E., et al. (2017): Soil nitrogen oxide fluxes from lowland forests converted to smallholder rubber and oil palm plantations in Sumatra, Indonesia. Biogeosciences, 14, 2781-2798, doi: 10.5194/bg-14-2781-2017.

Ding, W., et al. (2013): Effect of long-term compost and inorganic fertilizer application on background N₂O and fertilizer-induced N₂O emissions from an intensively cultivated soil. Science of the Total *Environment* **465**, 115-124, doi: 10.1016/j.scitotenv.2012.11.020.

Shurpali, N.J., et al. (2016): Neglecting leads to uncertainties in terrestrial nitrout Scientific Reports. 6:25739. doi: 10.103

Cowan, N.J., et al. (2014): Investigating agricultural soils using a high-precision method. Atmos. Meas. Tech., 7, 4455-4 doi: 10.5194/amt-7-4455-2014

EGU2019-5008

Fig. 5: Scatter plots of day- and night-time N₂O flux (30-minute average) and soil moisture (a), soil temperature (b), atmospheric vapor pressure deficit (c), air temperature (d), photosynthetically active radiation (PAR) (e), evapotranspiration (f), sensible heat flux (g), and daily average N₂O flux vs. daily sum of

• N_2O fluxes show no correlation with soil moisture (Fig. 5 a) and soil temperature (Fig. 5 b) but day-time N_2O fluxes generally increase with increasing vapor pressure deficit (VPD) (Fig. 5 c), increasing air temperature (Fig. 5 d), increasing photosynthetically active radiation (PAR) (Fig. 5 e), increasing evapotranspiration (Fig. 5 f) and increasing

• The oil palm plantation is a source of N₂O, with average flux of 43.3 (±2.53 standard error) μ g N₂O-N m⁻² h⁻¹. The observed annual N₂O flux, based on 30-minute average values, equals to 3.63 (±0.10 SE) kg ha⁻¹ yr⁻¹ of N₂O-N emission and a global warming potential of 169.80 (\pm 4.57 SE) g CO₂-equivalent m⁻² (46.31 g carbon-equivalent m⁻²).

The relatively strong coupling of day-time N₂O fluxes with air temperature, VPD, PAR, and evapotranspiration might

The reason for the observed negative night-time N₂O flux is still unclear. Possibly, it could be true N₂O uptake driven

	Contact	Acknowled
diurnal variations us oxide emissions. 8/srep25739.	Christian Stiegler, PhD Bioclimatology,	This study is fu DFG Deutsche Forschungsgei
uptake of N ₂ O in dynamic chamber 462,	University of Göttingen, Germany christian.stiegler@biologie.uni-goettingen.de www.uni-goettingen.de/bioclimatology	Collaborative Research Cent University of G

unded by meinschaft ter 990, Göttingen