

Datum:

06.02.2012

Nr· 1

#### **Inhaltsverzeichnis**

**Seite** 

#### Biologische Fakultät (Federführung):

Erste Änderung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den Bachelor-Studiengang "Biochemie" 1

#### Biologische Fakultät (Federführung):

Nach Beschluss des Fakultätsrates der Biologischen Fakultät vom 02.12.2011 hat das Präsidium der Georg-August-Universität Göttingen am 10.01.2012 die erste Änderung des Modulverzeichnisses zur Prüfungs- und Studienordnung für den Bachelor-Studiengang "Biochemie" (veröffentlicht in den Amtlichen Mitteilungen II Nr. 8 vom 14.10.2011, S. 1028) genehmigt (§ 44 Abs. 1 Satz 2 NHG in der Fassung der Bekanntmachung vom 26.02.2007( (Nds. GVBI S. 69); zuletzt geändert durch Artikel 12 des Gesetzes vom 17.11.2011 (Nds. GVBI S. 422); § 37 Abs. 1 Satz 3 Nr. 5 b) NHG, § 44 Abs. 1 Satz 3 NHG).

Die geänderte Fassung des Modulverzeichnisses wird nachfolgend bekannt gemacht.

## Modulverzeichnis

zu der Prüfungs- und Studienordnung für den Bachelor-Studiengang Biochemie; (Amtliche Mitteilungen I 1/2012 S. 33)

## Module

| B.Bio.102: Ringvorlesung Biologie II                                                | 10 |
|-------------------------------------------------------------------------------------|----|
| B.Bio.112: Biochemie                                                                | 11 |
| B.Bio.113: Angewandte Bioinformatik I                                               | 12 |
| B.Bio.125: Zell- und Molekularbiologie der Pflanze                                  | 13 |
| B.Bio.129: Genetik und mikrobielle Zellbiologie                                     | 14 |
| B.Biochem.401: Einführung in die Biochemie                                          | 15 |
| B.Biochem.403: Physikalische Chemie für Biochemiker                                 | 16 |
| B.Biochem.410: Bioanalytik                                                          | 17 |
| B.Biochem.420: Biophysikalische Chemie                                              | 18 |
| B.Biochem.421: Biologische Chemie                                                   | 19 |
| B.Biochem.422: Biomolekulare Chemie                                                 | 20 |
| B.Biochem.423: Experimentalchemie I                                                 | 21 |
| B.Biochem.424: Experimentalchemie II                                                | 22 |
| B.Biochem.425: Computergestützte Datenanalyse                                       | 24 |
| B.Biochem.430: Fachvertiefung Biochemie                                             | 25 |
| B.Biochem.431: Fachvertiefung Biophysikalische Chemie                               | 27 |
| B.Biochem.432: Fachvertiefung Molekulare Genetik                                    | 28 |
| B.Biochem.433: Fachvertiefung Zellbiologie                                          | 29 |
| B.Biochem.435: Fachvertiefung Biomolekulare Chemie                                  | 30 |
| B.Biochem.436: Fachvertiefung Bioanorganische Chemie                                | 31 |
| B.Biochem.437: Fachvertiefung Bioorganische Chemie                                  | 32 |
| B.Biochem.438: Fachvertiefung Bioanalytik                                           | 33 |
| B.Biochem.490: Gute wissenschaftliche Praxis und Projektmanagement in der Biochemie | 34 |
| B.Bio-NF.111: Anthropologie                                                         | 35 |
| B.Bio-NF.114-2: Grundlagen der Bioinformatik                                        | 36 |
| B.Bio-NF.116: Allgemeine Entwicklungs- und Zellbiologie                             | 37 |
| B.Bio-NF.118: Mikrobiologie                                                         | 38 |
| B.Bio-NF.119-1: Kognitive Neurowissenschaften                                       | 39 |
| B.Bio-NF.119-2: Theoretische Neurowissenschaften                                    | 40 |

| B.Bio-NF.119-3: Neuro- und Verhaltensbiologie                                                    | 41 |
|--------------------------------------------------------------------------------------------------|----|
| B.Bio-NF.119-4: Biologische Psychologie I                                                        | 42 |
| B.Bio-NF.123: Tierphysiologie                                                                    | 43 |
| B.Bio-NF.124: Humangenetik                                                                       | 44 |
| B.Bio-NF.126: Tier- und Pflanzenökologie                                                         | 45 |
| B.Bio-NF.127: Evolution und Systematik der Pflanzen                                              | 46 |
| B.Bio-NF.128: Evolution und Systematik der Tiere                                                 | 47 |
| B.Che.1002: Mathematik für Chemiker I                                                            | 48 |
| B.Che.1003: Mathematik für Chemiker II                                                           | 50 |
| B.Che.1004: Strukturaufklärungsmethoden in der Chemie                                            | 52 |
| B.Che.1401: Atombau und chemische Bindung                                                        | 54 |
| B.Che.2901: Wissenschaftskommunikation                                                           | 56 |
| B.Che.3902: Industriepraktikum                                                                   | 57 |
| B.Che.3903: Umweltchemie                                                                         | 58 |
| B.Che.3904: Grundlagen der Radiochemie                                                           | 59 |
| B.Che.3908: Tätigkeit in der studentischen Selbstverwaltung der Fakultät für Chemie              | 61 |
| B.Che.3909: Tätigkeit in der akademischen Selbstverwaltung an der Fakultät für Chemie            | 62 |
| B.Phy.706: Experimentalphysik II für Nebenfach                                                   | 63 |
| B.Phy-NF.715-1: Experimentalphysik I für Chemiker, Biochemiker, Geologen und Molekularmediziner  | 64 |
| SK.Bio.114-1: Linux und Perl für Biologen                                                        | 65 |
| SK.Bio.305: Grundlagen der Biostatistik mit R                                                    | 66 |
| SK.Bio.310: Algen- und Gewässerökologie                                                          | 67 |
| SK.Bio.315: Bioethik                                                                             | 68 |
| SK.Bio.316: Philosophie der Biologie                                                             | 69 |
| SK.Bio.320: Archäometrie                                                                         | 70 |
| SK.Bio.325: Unternehmenspraktikum                                                                | 71 |
| SK.Bio.335: Geschichte und Theorien der Biologie                                                 | 72 |
| SK.Bio.340: Einführung in das wissenschaftliche Arbeiten für Biologen                            | 73 |
| SK.FS.E-FN-C1-1: Scientific English I - C1.1 - Fachsprache Englisch für Naturwissenschaftler I   | 74 |
| SK.FS.E-FN-C1-2: Scientific English II - C1.2 - Fachsprache Englisch für Naturwissenschaftler II | 76 |
| SQ.SoWi.9: Tätigkeit in der studentischen bzw. akademischen Selbstverwaltung                     | 78 |

## Übersicht nach Modulgruppen

#### 1) Bachelor-Studiengang "Biochemie"

Es müssen Leistungen im Umfang von 180 C erfolgreich absolviert werden.

#### a) Orientierungsjahr

Es müssen folgende Module im Umfang von insgesamt 62 C erfolgreich absolviert werden.

#### aa) Orientierungsmodule

| B.Bio.102: Ringvorlesung Biologie II (8 C, 6 SWS)10              |
|------------------------------------------------------------------|
| B.Biochem.401: Einführung in die Biochemie (7 C, 6 SWS)          |
| B.Biochem.423: Experimentalchemie I (12 C, 12 SWS)21             |
| B.Biochem.424: Experimentalchemie II (12 C, 12 SWS)22            |
| bb) Pflichtmodule                                                |
| B.Biochem.403: Physikalische Chemie für Biochemiker (4 C, 4 SWS) |
|                                                                  |
| B.Che.1002: Mathematik für Chemiker I (6 C, 6 SWS)48             |
| B.Che.1002: Mathematik für Chemiker I (6 C, 6 SWS)               |
|                                                                  |

#### b) Hauptstudium

Es müssen Module im Umfang von 106 C erfolgreich absolviert werden.

#### aa) Fachwissenschaftliche Grundlagen

Es müssen folgende Pflichtmodule im Umfang von 75 C erfolgreich absolviert werden.

| B.Bio.112: Biochemie (10 C, 7 SWS)                               | . 11 |
|------------------------------------------------------------------|------|
| B.Bio.113: Angewandte Bioinformatik I (10 C, 7 SWS)              | .12  |
| B.Bio.125: Zell- und Molekularbiologie der Pflanze (10 C, 7 SWS) | .13  |
| B.Bio.129: Genetik und mikrobielle Zellbiologie (10 C, 7 SWS)    | . 14 |
| B.Biochem.410: Bioanalytik (6 C, 6 SWS)                          | .17  |
| B.Biochem.420: Biophysikalische Chemie (6 C, 4 SWS)              | . 18 |
| B.Biochem.421: Biologische Chemie (6 C, 6 SWS)                   | . 19 |

| B.Biochem.422: Biomolekulare Chemie (4 C, 3 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| B.Che.1004: Strukturaufklärungsmethoden in der Chemie (8 C, 7 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                     |
| B.Che.1401: Atombau und chemische Bindung (5 C, 4 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54                     |
| bb) Fachliche Profilbildung und Fachvertiefung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| Die Fachvertiefung dient zur wissenschaftlichen Profilbildung. Es müssen Pflicht- und Wahlpflichtmodule im Umfang von 22 C belegt werden. Die Fachvertiefung hat Blockst dauert insgesamt 8 Wochen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | truktur und            |
| i) Wahlpflichtmodule: Vertiefungspraktika                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| Es muss eines der folgenden Module im Umfang von 12 C erfolgreich absolviert we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erden.                 |
| B.Biochem.430: Fachvertiefung Biochemie (12 C, 18 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                     |
| B.Biochem.431: Fachvertiefung Biophysikalische Chemie (12 C, 18 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                     |
| B.Biochem.432: Fachvertiefung Molekulare Genetik (12 C, 18 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                     |
| B.Biochem.433: Fachvertiefung Zellbiologie (12 C, 18 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29                     |
| B.Biochem.435: Fachvertiefung Biomolekulare Chemie (12 C, 18 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                     |
| B.Biochem.436: Fachvertiefung Bioanorganische Chemie (12 C, 18 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                     |
| B.Biochem.437: Fachvertiefung Bioorganische Chemie (12 C, 18 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32                     |
| B.Biochem.438: Fachvertiefung Bioanalytik (12 C, 18 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                     |
| ii) Pflichtmodule: Schlüsselkompetenzen (Methoden-, Sach- und<br>Sprachkompetenz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| Es müssen folgende Module im Umfang von 10 C erfolgreich absolviert werden.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| B.Biochem.425: Computergestützte Datenanalyse (4 C, 3 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                     |
| B.Biochem.490: Gute wissenschaftliche Praxis und Projektmanagement in der Biochem.490: Gute Wissenscha | •                      |
| iii) Wissenschaftliche Profilbildung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| Es müssen Module im Umfang von insgesamt wenigstens 9 C erfolgreich absolvier werden, wobei aus dem universitätsweiten Modulverzeichnis Schlüsselkompetenze Studienangeboten der Zentralen Einrichtung für Sprachen und Schlüsselqualifikatio sowie nachfolgenden Wahlmodulen der Biologischen Fakultät und der Fakultät für gewählt werden kann.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | en, den<br>onen (ZESS) |
| B.Bio-NF.111: Anthropologie (6 C, 4 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                     |
| B.Bio-NF.114-2: Grundlagen der Bioinformatik (6 C, 4 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36                     |
| B.Bio-NF.116: Allgemeine Entwicklungs- und Zellbiologie (6 C, 4 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37                     |
| B.Bio-NF.118: Mikrobiologie (6 C, 4 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38                     |
| B.Bio-NF.119-1: Kognitive Neurowissenschaften (3 C, 2 SWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39                     |

| B.Bio-NF.119-2: Theoretische Neurowissenschaften (4 C, 3 SWS)                                                    | 40 |
|------------------------------------------------------------------------------------------------------------------|----|
| B.Bio-NF.119-3: Neuro- und Verhaltensbiologie (3 C, 2 SWS)                                                       | 41 |
| B.Bio-NF.119-4: Biologische Psychologie I (4 C, 2 SWS)                                                           | 42 |
| B.Bio-NF.123: Tierphysiologie (6 C, 4 SWS)                                                                       | 43 |
| B.Bio-NF.124: Humangenetik (6 C, 4 SWS)                                                                          | 44 |
| B.Bio-NF.126: Tier- und Pflanzenökologie (6 C, 3 SWS)                                                            | 45 |
| B.Bio-NF.127: Evolution und Systematik der Pflanzen (6 C, 4 SWS)                                                 | 46 |
| B.Bio-NF.128: Evolution und Systematik der Tiere (6 C, 5 SWS)                                                    | 47 |
| B.Che.2901: Wissenschaftskommunikation (4 C, 3 SWS)                                                              | 56 |
| B.Che.3902: Industriepraktikum (6 C)                                                                             | 57 |
| B.Che.3903: Umweltchemie (3 C, 2 SWS)                                                                            | 58 |
| B.Che.3904: Grundlagen der Radiochemie (6 C, 8 SWS)                                                              | 59 |
| B.Che.3908: Tätigkeit in der studentischen Selbstverwaltung der Fakultät für Chemie (4 C).                       | 61 |
| B.Che.3909: Tätigkeit in der akademischen Selbstverwaltung an der Fakultät für Chemie (4 C)                      | 62 |
| SK.Bio.114-1: Linux und Perl für Biologen (4 C, 3 SWS)                                                           | 65 |
| SK.Bio.305: Grundlagen der Biostatistik mit R (3 C, 2 SWS)                                                       | 66 |
| SK.Bio.310: Algen- und Gewässerökologie (3 C, 2 SWS)                                                             | 67 |
| SK.Bio.315: Bioethik (3 C, 2 SWS)                                                                                | 68 |
| SK.Bio.316: Philosophie der Biologie (3 C, 2 SWS)                                                                | 69 |
| SK.Bio.320: Archäometrie (4 C, 3 SWS)                                                                            | 70 |
| SK.Bio.325: Unternehmenspraktikum (12 C)                                                                         | 71 |
| SK.Bio.335: Geschichte und Theorien der Biologie (3 C, 2 SWS)                                                    | 72 |
| SK.Bio.340: Einführung in das wissenschaftliche Arbeiten für Biologen (3 C, 4 SWS)                               | 73 |
| SQ.SoWi.9: Tätigkeit in der studentischen bzw. akademischen Selbstverwaltung (6 C, 1 SWS)                        | 78 |
| cc) Profilbildung für englischsprachige konsekutive Masterprogramme                                              |    |
| Empfohlen werden folgende Module, um einen Übergang in einen englischsprachigen Masterstudiengang vorzubereiten. |    |
| SK.FS.E-FN-C1-1: Scientific English I - C1.1 - Fachsprache Englisch für Naturwissenschaftler (6 C, 4 SWS)        |    |
| SK.FS.E-FN-C1-2: Scientific English II - C1.2 - Fachsprache Englisch für Naturwissenschaftler (6 C, 4 SWS)       |    |

#### c) Bachelorarbeit

Durch die erfolgreiche Anfertigung der Bachelorarbeit werden 12 C erworben. Die Bachelorarbeit hat eine Blockstruktur und dauert 12 Wochen.

| Georg-August-Universität Göttingen         | 8 C   |
|--------------------------------------------|-------|
| Modul B.Bio.102: Ringvorlesung Biologie II | 6 SWS |

| Lernziele/Kompetenzen:                                                               | Arbeitsaufwand: |
|--------------------------------------------------------------------------------------|-----------------|
| Die Studierenden erhalten eine Orientierung über die verschiedenen biologischen      | Präsenzzeit:    |
| Disziplinen. Es wird eine gemeinsame Grundlage für weiterführende Module gelegt.     | 84 Stunden      |
| Grundlagen in Biochemie, Bioinformatik, Entwicklungsbiologie, Genetik, Mikrobiologie | Selbststudium:  |
| und Pflanzenphysiologie werden vermittelt.                                           | 156 Stunden     |

| Lehrveranstaltung: Biologische Ringvorlesung | 6 SWS |
|----------------------------------------------|-------|
| Prüfung: Klausur (90 Minuten)                |       |
| Prüfung: Klausur (90 Minuten)                |       |

#### Prüfungsanforderungen:

Grundlegende Kenntnisse und Kompetenzen in den Disziplinen Biochemie, Genetik, Bioinformatik, Entwicklungsbiologie, Mikrobiologie und Pflanzenphysiologie, dies beinhaltet die chemische Struktur von Kohlenhydraten, Proteinen und Fetten. Grundlagenkenntnisse von einfachen Stoffwechselprozessen wie Glykolyse und Citratzyklus, Redoxreaktionen und Atmungskette, Abbau von Proteinen, Harnstoffzyklus, Verdauungsenzyme, Struktur von DNA und RNA, Transkription und Translation, Prinzipien der Vererbung und Genregulation in Pro-und Eukaryoten, grundlegende Kenntnisse der Bioinformatik zum Erstellen von Alignements und zur Rekonstruktion phylogenetischer Bäume, Kenntnisse der Konzepte der Entwicklungsbiologie und ihrer Modellorganismen, Vielfalt, Bedeutung und Aufbau von Mikroorganismen, Wachstum und Vermehrung, mikrobielle Stoffwechseltypen, Grundlegende Kenntnisse der Pflanzenphysiologie wie Photosynthese, Wassertransport, Pflanzenhormone und pflanzliche Reproduktion.

| Zugangsvoraussetzungen:    | Empfohlene Vorkenntnisse:   |
|----------------------------|-----------------------------|
| keine                      | keine                       |
| Sprache:                   | Modulverantwortliche[r]:    |
| Deutsch                    | Prof. Dr. Stefanie Pöggeler |
| Angebotshäufigkeit:        | Dauer:                      |
| Jedes Sommersemester       | 1 Semester                  |
| Wiederholbarkeit:          | Empfohlenes Fachsemester:   |
| zweimalig                  | 2                           |
| Maximale Studierendenzahl: |                             |
| 240                        |                             |

| Georg-August-Universität Göttingen                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------|
| Modul B.Bio.112: Biochemie                                                                                                                                                                                                                                                                                                                                                             |                                    | 7 SWS                                                               |
| Modul B.Bio. 112. Biochemie                                                                                                                                                                                                                                                                                                                                                            |                                    |                                                                     |
| Lernziele/Kompetenzen: Die Studierenden erwerben Grundlegende Stoffkenntnisse und einen Überblick über Grundprinzipien biochemischer Reaktionen sowie die Anwendung biochemischer Methoden. Sie erhalten Einsicht in die Grundlagen der Proteinchemie und der Genetik: DNA, RNA, Enzyme, Kohlenhydrate, Lipide und Zellmembranen, Grundlagen des Metabolismus und Signal Transduktion. |                                    | Arbeitsaufwand: Präsenzzeit: 100 Stunden Selbststudium: 200 Stunden |
| Lehrveranstaltungen:                                                                                                                                                                                                                                                                                                                                                                   |                                    |                                                                     |
| 1. Grundlagen der Biochemie (Vorlesung)                                                                                                                                                                                                                                                                                                                                                |                                    | 4 SWS                                                               |
| 2. Biochemisches Grundpraktikum (Praktikum)                                                                                                                                                                                                                                                                                                                                            |                                    | 3 SWS                                                               |
| Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: Teilnahme am Praktikum und testierte Protokolle Prüfungsanforderungen: Anabolismus und Katabolismus von Aminosäuren, Kohlenhydraten, Lipiden und                                                                                                                                                                                  |                                    |                                                                     |
| Nukleinsäuren; Synthese, Struktur und Funktion von Makromolekülen; Erzeugung und Speicherung von Stoffwechselenergie Biochemische Fragestellungen im Experiment, Durchführung, Dokumentation, Auswertung und Bewertung von Experimenten, Teamarbeit zur Lösung experimenteller Aufgaben                                                                                                |                                    |                                                                     |
| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen                                                                                                                                                                                                                                          | Empfohlene Vorkenntnisse:<br>keine |                                                                     |
| Sprache: Modulverantwortliche[r]: Deutsch Dr. Ellen Hornung                                                                                                                                                                                                                                                                                                                            |                                    |                                                                     |
| Angebotshäufigkeit:                                                                                                                                                                                                                                                                                                                                                                    | Dauer:                             |                                                                     |

1 Semester

3 - 5

**Empfohlenes Fachsemester:** 

Jedes Wintersemester

Maximale Studierendenzahl:

Wiederholbarkeit:

zweimalig

160

# Georg-August-Universität Göttingen Modul B.Bio.113: Angewandte Bioinformatik I

# Lernziele/Kompetenzen: Nach erfolgreichem Absolvieren des Moduls werden die Studenten die meisten in der biowissenschaftlichen Forschung benötigten Datenbanken in ihrem Aufbau verstanden haben und deren Inhalte kritisch einschätzen können. Sie werden die Selbststudium: Selbst biologische Fakten zu strukturieren und in ein Datenbankschema zu übertragen. Sie werden in der Lage sein, bioinformatische Methoden insbesondere auf die Analyse von Sequenzdaten, biologischen Netzwerken und Genexpressionsdaten kritisch anzuwenden.

| Lehrveranstaltungen:                                                                 |       |
|--------------------------------------------------------------------------------------|-------|
| 1. Einführung in die angewandte Bioinformatik (Vorlesung)                            | 4 SWS |
| 2. Internet-basierte Bioinformatik (Praktikum)                                       | 3 SWS |
| Prüfung: Klausur (90 Minuten)                                                        |       |
| Prüfungsanforderungen:                                                               |       |
| Die Studierenden sollen geeigneter Informationsquellen für bestimmte Wissensbereiche |       |
| im Internet identifizieren und benennen können; sie sollen in der Lage sein, die     |       |
| Grundlagen für ein einfaches Datenbankschema darzustellen und ein solches Schema     |       |
| exemplarisch zu entwickeln; sie sollen Maßzahlen zur kritischen Bewertung von        |       |
| bioinformatischen Analyseverfahren benennen und anwenden können; sie kennen          |       |
| verschiedene grundlegende Methoden des Sequenzvergleichs; sie sind vertraut mit der  |       |
| Anwendung einzelner Verfahren zur phylogenetischen Rekonstruktion; die Anwendung     |       |

des Informationsbegriffs bei der Analyse von Sequenzdaten ist ihnen geläufig; sie sollen grundlegende Eigenschaften biologischer Netzwerke und ihrer graphentheoretischen

Repräsentation wiedergeben und anwenden können.

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse:<br>keine                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Sprache: Deutsch                                                                                                                              | Modulverantwortliche[r]: Prof. Dr. Edgar Wingender |
| Angebotshäufigkeit: Jedes Wintersemester                                                                                                      | Dauer: 1 Semester                                  |
| Wiederholbarkeit:<br>zweimalig                                                                                                                | Empfohlenes Fachsemester: 3 - 5                    |
| Maximale Studierendenzahl:<br>100                                                                                                             |                                                    |

## Georg-August-Universität Göttingen Modul B.Bio.125: Zell- und Molekularbiologie der Pflanze

#### Lernziele/Kompetenzen:

In Rahmen der Vorlesung erhalten die Studierenden einen Einblick in die Besonderheiten der pflanzlichen Zelle, erlernen die Beziehung zwischen Struktur und Funktion der Organellen und der Zellwand und bekommen einen Überblick über Transportprozesse und intrazellulärer Signaltransduktion. Sie lernen die Modellpflanze Arabidopsis thaliana kennen und erwerben Kenntnisse der Biosynthese, Signaltransduktion und Wirkung von Phytohormonen sowie der molekularen Anpassungsmechanismen von Pflanzen an verschiedene abiotische und biotische Stressbedingungen. Die Studierenden erhalten einen Überblick zu den aktuellen Fakten der Phylogenie und Biotechnologie von Algen. Nach Abschluss des praktischen Teils besitzen die Studierenden methodische Kenntnisse der Licht- und Fluoreszenzmikroskopie, des Gentransfer, der Reportergenanalyse, der Polymerasekettenreaktion sowie Proteinnachweismethoden und können zell- und molekularbiologische Versuche konzipieren, durchführen, auswerten, dokumentieren und wissenschaftliche Ergebnisse diskutieren.

#### Arbeitsaufwand:

Präsenzzeit: 100 Stunden Selbststudium: 200 Stunden

| Lehrveranstaltungen:                                                                  |       |
|---------------------------------------------------------------------------------------|-------|
| 1. Zell- und Molekularbiologie der Pflanze (Vorlesung)                                | 4 SWS |
| 2. Zell- und Molekularbiologie der Pflanze (Praktikum)                                | 3 SWS |
| Prüfung: Klausur (90 Minuten)                                                         |       |
| Prüfungsvorleistungen:                                                                |       |
| Teilnahme am Praktikum und testierte Protokolle                                       |       |
| Prüfungsanforderungen:                                                                |       |
| Arabidopsis thaliana als Modellsystem zur Erforschung zell- und molekularbiologischer |       |
| Prozesse, Methoden zur Erforschung zell- und molekularbiologischer Prozesse, Mecha-   |       |
| nismen des Transport von Proteinen in unterschiedliche Zellorganellen und in die      |       |
| Zellwand, Mechanismen pflanzlicher Signaltransduktion und pflanzlicher Immunität      |       |

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse:<br>keine                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Sprache: Deutsch  Angebotshäufigkeit: Jedes Wintersemester; Praktikum in vorlesungsfreier Zeit                                                | Modulverantwortliche[r]: Prof. Dr. Christiane Gatz  Dauer: 1 Semester |
| Wiederholbarkeit:<br>zweimalig                                                                                                                | Empfohlenes Fachsemester:<br>3 - 5                                    |
| Maximale Studierendenzahl: 90                                                                                                                 |                                                                       |

#### Georg-August-Universität Göttingen 10 C 7 SWS Modul B.Bio.129: Genetik und mikrobielle Zellbiologie

#### Lernziele/Kompetenzen:

Die Studierenden erwerben Grundlagenwissen über klassische und molekulare Genetik und Zellbiologie und einen Überblick über genetische, molekularbiologische und zellbiologische Methoden sowie Modellorganismen. Sie sollen die Einsichten in die Vererbung von genetischer Information und die komplexe Regulation der Genexpression 200 Stunden gewinnen. Nach Abschluss des Moduls sollen sie in der Lage sein zu verstehen, wie Entwicklung und Morphologie von Ein- und Mehrzellern durch Gene gesteuert wird und wie Gene die Gestalt und Funktion von Zellen beeinflussen.

Sie lernen einfache genetische und molekularbiologische Experimente selbstständig durchzuführen und die erhaltenen Ergebnisse kritisch zu hinterfragen.

#### Arbeitsaufwand:

Präsenzzeit: 100 Stunden Selbststudium:

4 SWS

Lehrveranstaltung: Genetik und mikrobielle Zellbiologie (Vorlesung)

Prüfung: Klausur (90 Minuten)

Prüfungsvorleistungen:

Praktikumsprotokolle (10% der Gesamtnote)

#### Prüfungsanforderungen:

Die Studierenden sollen stichpunktartig Fragen aus den Bereichen der Genetik und Zellbiologie beantworten und Aussagen zu genetischen und zellbiologischen Fakten und Zusammenhänge auf ihren Wahrheitsgehalt überprüfen können. Als Grundlage dienen erworbene Kenntnisse der Lerninhalte der Lehrveranstaltung, die Bearbeitung von vorlesungsbegleitenden Fragen in Tutorien, für den Teil Genetik das Lehrbuch: Watson, 6th Edition, Molecular Biology of the Gene (Pearson) und für den Teil Zellbiologie: Ausgewählte Kapitel aus dem Lehrbuch Alberts et al., 5th Edition, Molecular Biology of the Cell (Garland Science)

Lehrveranstaltung: Genetik und mikrobielle Zellbiologie (Praktikum) 3 SWS

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse:<br>keine               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Sprache: Deutsch                                                                                                                              | Modulverantwortliche[r]: Prof. Dr. Gerhard Braus |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                      | Dauer: 1 Semester                                |
| Wiederholbarkeit:<br>zweimalig                                                                                                                | Empfohlenes Fachsemester:<br>4 - 6               |
| Maximale Studierendenzahl:<br>94                                                                                                              |                                                  |

| Georg-August-Universität Göttingen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | 7 C                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|
| Modul B.Biochem.401: Einführung in die Biochemie                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                | 6 SWS                                                              |
| Lernziele/Kompetenzen: Die Studierenden erhalten eine Orientierung über die verschiedenen biochemischen Disziplinen und eine gemeinsame Grundlage für weiterführende Module. Grundlagen in Molekularbiologie, Biochemie und Genetik werden vermittelt. Im Seminar bekommen die Studierenden einen detaillierten Einblick in die aktuellen Forschungsschwerpunkte bzw. Forschungsprojekte der am Studiengang "Biochemie" beteiligten Abteilungen und werden mit den dort verwendeten Arbeitsmethoden vertraut gemacht. |                                                | Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 126 Stunden |
| Lehrveranstaltungen: 1. Einführung in die Biochemie (Vorlesung) Angebotshäufigkeit: Jedes Wintersemester 2. Einführung in die Biochemie (Seminar) Angebotshäufigkeit: Jedes Sommersemester                                                                                                                                                                                                                                                                                                                            |                                                | 2 SWS<br>4 SWS                                                     |
| Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: regelmäßige Teilnahme am Seminar und testierte Protokolle                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                                                    |
| Prüfung: , unbenotet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                                                                    |
| Prüfungsanforderungen: Grundlegende Kenntnisse zum Aufbau der Zelle, dem biochemischen Reaktionen und Analysemethoden, zu Prozesse. Überblick über die verschiedenen Disziplin Biomolekulare Chemie und der Zellbiologie.                                                                                                                                                                                                                                                                                             | Grundprinzipien biochemischer                  |                                                                    |
| Zugangsvoraussetzungen: keine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Empfohlene Vorkenntnisse: keine                |                                                                    |
| Sprache: Deutsch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Modulverantwortliche[r]: Prof. Dr. Ivo Feußner |                                                                    |
| Angebotshäufigkeit: Vorlesung jedes WiSe, Seminar jedes SoSe                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dauer:<br>2 Semester                           |                                                                    |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Empfohlenes Fachsemester:<br>1 - 3             |                                                                    |
| Maximale Studierendenzahl:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                                                                    |

# Georg-August-Universität Göttingen Modul B.Biochem.403: Physikalische Chemie für Biochemiker 4 C 4 SWS

## Lernziele/Kompetenzen:

Nach erfolgreichem Abschluss des Moduls kann der Studierende

- grundlegende Begriffe und Gesetzmäßigkeiten der physikalischen Chemie verstehen und mit ihrer mathematischen Formulierung umgehen
- thermodynamische Gesetze auf reversible und irreversible Zustandsänderungen anwenden
- Phasen- und Reaktionsgleichgewichte berechnen
- elektrochemische Potentiale auf der Basis von Elektrolyteigenschaften quantitativ bestimmen
- pH-Werte, Titrationskurven und Dissoziationsgleichgewichte berechnen
- kinetische Modelle enzymatischer und anderer komplexer Reaktionen quantitativ formulieren, ihre Temperaturabhängigkeit interpretieren und einfache theoretische Beschreibungen chemischer Reaktionen verstehen
- grundlegende physikochemische Messungen durchführen, quantitativ auswerten und die Signifikanz der Ergebnisse beurteilen

#### Arbeitsaufwand:

Präsenzzeit: 56 Stunden

Selbststudium: 64 Stunden

| Lehrveranstaltungen:                                                            |       |
|---------------------------------------------------------------------------------|-------|
| 1. Physikalische Chemie als Nebenfach (Vorlesung)                               | 2 SWS |
| 2. Übungen zur physikalischen Chemie (Übung)                                    | 2 SWS |
| Prüfung: Klausur (180 Minuten)                                                  |       |
| Prüfungsanforderungen:                                                          |       |
| Vertiefte Grundkenntnisse der physikalischen Chemie, insbesondere der           |       |
| Gleichgewichtsthermodynamik (Hauptsätze der Thermodynamik, Gase,                |       |
| Mischungen, Entropie, Enthalpie, thermodynamisches Potential), Reaktionskinetik |       |
| (Elementarreaktionen, Bestimmung von Reaktionsgeschwindigkeiten) und            |       |
| Elektrochemie (elektrochemisches Gleichgewicht, Potentiale, Halbzellen)         |       |

| Zugangsvoraussetzungen:                  | Empfohlene Vorkenntnisse:                           |
|------------------------------------------|-----------------------------------------------------|
| keine                                    | keine                                               |
| Sprache:<br>Deutsch                      | Modulverantwortliche[r]: Prof. Dr. Andreas Janshoff |
| Angebotshäufigkeit: Jedes Wintersemester | Dauer: 1 Semester                                   |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester:                           |
| Maximale Studierendenzahl: 40            |                                                     |

| Georg-August-Universität Göttingen | 6 C   |
|------------------------------------|-------|
| Modul B.Biochem.410: Bioanalytik   | 6 SWS |

| Modul B. Biochem. 410. Bioanalytik                                                     |                   |
|----------------------------------------------------------------------------------------|-------------------|
| Lernziele/Kompetenzen:                                                                 | Arbeitsaufwand:   |
| Nach erfolgreichem Abschluß des Moduls besitzen die Studierenden ein tiefergehendes    | Präsenzzeit:      |
| Verständnis der naturwissenschaftlichen Grundlagen moderner bioanalytischer            | 84 Stunden        |
| Verfahren und der Prinzipien der quantitativen Datenanalyse. Die Studierenden erlernen | Selbststudium: 96 |
| verschiedene experimentelle Arbeitstechniken anhand der biophysikalischen und          | Stunden           |
| biochemischen Analyse von Biomakromolekülen, insbesondere von Proteinen und            |                   |
| Nukleinsäuren.                                                                         |                   |
| Lehrveranstaltungen:                                                                   |                   |
| 1. Moderne Methoden der Bioanalytik (Vorlesung)                                        | 2 SWS             |
| 2. Bioanalytisches Praktikum für Fortgeschrittene (Praktikum)                          | 3 SWS             |
| 3. Tutorium für Bioanalytik                                                            | 1 SWS             |
| Prüfung: Klausur (120 Minuten)                                                         |                   |
| Prüfungsvorleistungen:                                                                 |                   |
| Regelmäßige Teilnahme am Praktikum und testierte Protokolle                            |                   |
| Prüfungsanforderungen:                                                                 |                   |
| 1. Kenntnisse in folgenden Wissensgebieten: Kinetik und Thermodynamik                  |                   |
| von biomolekularen Interaktionen; spektroskopische Methoden inkl.                      |                   |
| Einzelmolekülspektroskopie, Nanotechnologie, synthetische Biologie, Systembiologie,    |                   |
| Mikrofluidik 2. Teamfähigkeit bei der Planung und Durchführung von Experimenten        |                   |

| Zugangsvoraussetzungen: keine            | Empfohlene Vorkenntnisse: 1. – 4. Semester      |
|------------------------------------------|-------------------------------------------------|
| Sprache: Deutsch                         | Modulverantwortliche[r]: Prof. Dr. Kai Tittmann |
| Angebotshäufigkeit: Jedes Wintersemester | Dauer:<br>1 Semester                            |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester: 5                     |
| Maximale Studierendenzahl: 40            |                                                 |

## Georg-August-Universität Göttingen Modul B.Biochem.420: Biophysikalische Chemie 6 C 4 SWS

#### Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Abschluss des Moduls Präsenzzeit: 56 Stunden • sollen die Studierenden in der Lage sein, die wesentlichen physikochemischen Selbststudium: Zusammenhänge biologischer Materie zu verstehen 124 Stunden • die generellen Triebkräfte biologischer Reaktionen kennen Spektroskopische Methoden zur Strukturbestimmung biologischer Makromoleküle verstehen und anwenden können • die Grundzüge moderner optischer Mikroskopie sowie der Sondenmikroskopie verstanden haben • die Mechanik und Dynamik bioogischer Systeme ausgehend vom Einzelmolekül bis zur einzelnen Zelle erörtern können

| Lehrveranstaltungen:                   |       |
|----------------------------------------|-------|
| 1. Biophysikalische Chemie (Vorlesung) | 3 SWS |
| 2. Biophysikalische Chemie (Übung)     | 1 SWS |
| Prüfung: Klausur (90 Minuten)          |       |

#### Prüfungsanforderungen:

- Strukturen biologischer Makromoleküle aus spektroskopischen und mikroskopischen Daten ableiten können
- Übertragung genereller physikochemischer Prinzipien, wie zum Beispiel der Reaktionsdynamik, (statistischen) Thermodynamik und Quantentheorie auf die Beschreibung biologischer Phänomene
- Kenntnisse der wesentlichen Methoden, wie z.B. Streumethoden, spektroskopische Methoden (UV-Vis, Fluoreszenz, Lumineszenz, Circulardichroismus ATR-IR, NMR, ESR, ...), kalorimetrischen und kolligativen Methoden

| Zugangsvoraussetzungen: keine | Empfohlene Vorkenntnisse: keine |
|-------------------------------|---------------------------------|
|                               |                                 |
| Sprache:                      | Modulverantwortliche[r]:        |
| Deutsch                       | Prof. Dr. Andreas Janshoff      |
| Angebotshäufigkeit:           | Dauer:                          |
| Jedes Sommersemester          | 1 Semester                      |
| Wiederholbarkeit:             | Empfohlenes Fachsemester:       |
| zweimalig                     | 4                               |
| Maximale Studierendenzahl:    |                                 |
| 40                            |                                 |

| Georg-August-Universität Göttingen                                                |                                 | 6 C               |
|-----------------------------------------------------------------------------------|---------------------------------|-------------------|
| Modul B.Biochem.421: Biologische Chemie                                           |                                 | 6 SWS             |
| Lernziele/Kompetenzen:                                                            |                                 | Arbeitsaufwand:   |
| Nach erfolgreicher Absolvierung des Moduls solle                                  | n die Studierenden mit den      | Präsenzzeit:      |
| Grundzügen der Herstellung von Biomolekülen un                                    | d deren analytischer Behandlung | 84 Stunden        |
| vertraut sein. Die Synthese von Oligonulcleotiden                                 | •                               | Selbststudium: 96 |
| automatisierter Festphasensynthese sowie deren                                    | • •                             | Stunden           |
| und in Theorie vermittelt werden. Der Umgang mit                                  |                                 |                   |
| Festphasensynthese, der HPLC Reinigung und Analytik mittels temperaturabhängiger  |                                 |                   |
| UV und Circulardichroismus Spektroskopie sowie Fluoreszenzspektroskopie werden    |                                 |                   |
| vermittelt. Die experimentelle Behandlung von Lipidmembran-Biochemie sowie die    |                                 |                   |
| Kinetik biokatalytischer Prozesse sind weitere Schwerpunkte des Moduls.           |                                 |                   |
| Lehrveranstaltung: Biologische Chemie (Praktikum)                                 |                                 | 6 SWS             |
| Prüfung: Praktikumsprotokolle                                                     |                                 |                   |
| Prüfungsanforderungen:                                                            |                                 |                   |
| Die Praktikumseinheiten Peptidsynthese, DNA-Synthese, Enzymkinetik, Spektroskopie |                                 |                   |
| der DNA-Erkennung, Fluoreszenzspektroskopie, Lipidmembran-Biochemie sollen        |                                 |                   |
| anhand von Protokollen in Theorie, experimenteller Durchführung und Diskussion    |                                 |                   |
| behandelt werden.                                                                 |                                 |                   |
| Zugangsvoraussetzungen:                                                           | Empfohlene Vorkenntnisse:       |                   |
| Orientierungsmodule                                                               | keine                           |                   |
| Sprache:                                                                          | Modulverantwortliche[r]:        |                   |
| Deutsch                                                                           | Prof. Dr. Ulf Diederichsen      |                   |
| Angebotshäufigkeit:                                                               | Dauer:                          |                   |
| Jedes Wintersemester                                                              | 1 Semester                      |                   |
| Wiederholbarkeit:                                                                 | Empfohlenes Fachsemester:       |                   |
| zweimalig                                                                         | 5                               |                   |
| Maximale Studierendenzahl:                                                        |                                 |                   |
|                                                                                   |                                 |                   |

40

Jedes Sommersemester

Maximale Studierendenzahl:

Wiederholbarkeit:

zweimalig

40

| Georg-August-Universität Göttingen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 4 C                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|
| Modul B.Biochem.422: Biomolekulare Chemie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | 3 SWS                                                                         |
| <ul> <li>Lernziele/Kompetenzen: Nach erfolgreicher Teilnahme an diesem Modul sollte der Studierende <ul> <li>die wesentlichen chemischen und physikalischen Eigenschaften der Komponenten biologischer Membranen kennen.</li> <li>die Grundprinzipien des passiven und aktiven Transports über Membranen beherrschen.</li> <li>sich mit verschiedenen Funktionalitäten von Membranproteinen auseinandergesetzt haben.</li> <li>die Grundlagen von biochemischen und biophysikalischen Verfahren zur Analyse von Membranen verstanden haben.</li> </ul> </li></ul> |                                                    | Arbeitsaufwand:<br>Präsenzzeit:<br>42 Stunden<br>Selbststudium: 78<br>Stunden |
| Lehrveranstaltungen: 1. Biomolekulare Chemie (Vorlesung) 2. Biomolekulare Chemie (Übung)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | 2 SWS<br>1 SWS                                                                |
| Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen: erfolgreich absolvierte Übungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                               |
| Prüfungsanforderungen: Selbstständiges Lösen von Aufgaben aus dem Bereich der Biomolekularen Chemie mit Schwerpunkt Membranbiochemie                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                               |
| Zugangsvoraussetzungen:<br>keine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Empfohlene Vorkenntnisse:<br>AC, OC, PC, Biochemie |                                                                               |
| Sprache: Deutsch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Modulverantwortliche[r]: Prof. Dr. Claudia Steinem |                                                                               |
| Angebotshäufigkeit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dauer:                                             |                                                                               |

1 Semester

**Empfohlenes Fachsemester:** 

Arbeitsaufwand:

| essig / laguet emirerenal estimgen        | 12 C   |
|-------------------------------------------|--------|
| Modul B.Biochem.423: Experimentalchemie I | 12 SWS |

|                                                                                     | / " Donodan manan |
|-------------------------------------------------------------------------------------|-------------------|
| Nach erfolgreichem Absolvieren des Moduls verstehen die Studierenden die            | Präsenzzeit:      |
| allgemeinen Prinzipien und Gesetzmäßigkeiten der allgemeinen und anorganischen      | 168 Stunden       |
| Chemie und besitzen einen sicheren Umgang mit deren Begriffen. Sie erwerben erste   | Selbststudium:    |
| Kenntnisse der anorganischen Stoffchemie und lernen experimentelle Arbeitstechniken | 192 Stunden       |
| anhand von Schlüsselreaktionen kennen.                                              |                   |
| Lehrveranstaltungen:                                                                |                   |
| 1. Experimentalchemie I (Vorlesung)                                                 | 4 SWS             |
| 2. Experimentalchemie I (Übung)                                                     | 2 SWS             |
| 3. Experimentalchemie I (Praktikum)                                                 | 5 SWS             |
| 4. Seminar zum Praktikum                                                            | 1 SWS             |
| Prüfung: Klausur (120 Minuten)                                                      |                   |
| Prüfungsvorleistungen:                                                              |                   |
| Regelmäßige Teilnahme am Praktikum und testierte Protokolle                         |                   |

#### Prüfungsanforderungen:

Lernziele/Kompetenzen:

Atombau und Periodensystem, Grundbegriffe, Elemente und Verbindungen, Aufbau der Materie, einfache Bindungskonzepte, Chemische Gleichungen und Stöchiometrie, Chemische Gleichgewichte, einfache Thermodynamik und Kinetik, Säure-Base-Reaktionen inklusive Puffer, Redoxreaktionen, Löslichkeit, einfache Elektrochemie, Vorkommen, Darstellung und Eigenschaften der Elemente und ihrer wichtigsten Verbindungen.

| Zugangsvoraussetzungen: keine            | Empfohlene Vorkenntnisse:<br>keine                |
|------------------------------------------|---------------------------------------------------|
| Sprache: Deutsch                         | Modulverantwortliche[r]: Prof. Dr. Dietmar Stalke |
| Angebotshäufigkeit: Jedes Wintersemester | Dauer: 1 Semester                                 |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester:                         |
| Maximale Studierendenzahl:<br>40         |                                                   |

## Georg-August-Universität Göttingen Modul B.Biochem.424: Experimentalchemie II

#### Lernziele/Kompetenzen:

Die Studierenden erhalten einen Überblick über organisch-chemische Prozesse des täglichen Lebens und der Biologie. Sie beherrschen die Begriffe der Chemie, die Substanzklassen, die Nomenklatur, die Methoden und Darstellungen sowie die Bindungstheorie. Sie verstehen die Substanzklassen der Alkane, Alkene und Alkine, Halogenalkane und Aromaten in ihren physikalischen Eigenschaften, der Herstellung und den wichtigsten Reaktionsmöglichkeiten. Hierzu gehören auch Polymerisationen oder im Bereich der Aromaten das Verständnis von elektronischem Einfluss auf die Reaktivität. Schließlich erwerben sie einen sicheren Umgang mit Funktionellen Gruppen, deren Reaktivität, Synthese und Umwandelbarkeit, wobei die Alkohole, Ether, Aldehyde, Ketone, Ester, Amide sowie weitere Carbonsäurederivate im Zentrum stehen. Sie besitzen Grundkenntnisse der molekularen Struktur wichtiger Naturstoffe (Kohlenhydrate, Fette, Wachse, Aminosäuren, Peptide, Proteine).

#### Arbeitsaufwand:

Präsenzzeit: 168 Stunden Selbststudium: 192 Stunden

| Lehrveranstaltungen:                                        |       |
|-------------------------------------------------------------|-------|
| 1. Experimentalchemie II (Vorlesung)                        | 4 SWS |
| 2. Experimentalchemie II (Übung)                            | 2 SWS |
| 3. Experimentalchemie II (Praktikum)                        | 5 SWS |
| 4. Seminar zum Praktikum                                    | 1 SWS |
| Prüfung: Klausur (120 Minuten)                              |       |
| Prüfungsvorleistungen:                                      |       |
| Regelmäßige Teilnahme am Praktikum und testierte Protokolle |       |

#### Prüfungsanforderungen:

Bindungstheorie; Stereochemie; Stoffchemie und einfache Transformationen (Kohlenwasserstoffe, Halogenalkane, Alkohole, Ether, Amine, Aromaten, Carbonyl-Verbindungen, Carbonsäuren und Derivate); Mechanismen (Nucleophile Substitution, Eliminierung, Addition, aromatische Substitution, Oxidation, Reduktion, Umlagerungen, pericyclische Reaktionen); Naturstoffchemie: Fette, Kohlenhydrate, Peptide/Proteine, Nucleinsäuren, Terpene, Steroide, Alkaloide, Antibiotika, Flavone.

| Zugangsvoraussetzungen:                        | Empfohlene Vorkenntnisse:  |
|------------------------------------------------|----------------------------|
| Zur Teilname am Praktikum "Experimentalchemie  | keine                      |
| II" muss das Praktikum "Experimentalchemie     |                            |
| I" erfolgreich mit regelmäßiger Teilnahme und  |                            |
| testierten Protokollen absolviert worden sein. |                            |
| Sprache:                                       | Modulverantwortliche[r]:   |
| Deutsch                                        | Prof. Dr. Ulf Diederichsen |
| Angebotshäufigkeit:                            | Dauer:                     |
| Jedes Sommersemester                           | 1 Semester                 |
| Wiederholbarkeit:                              | Empfohlenes Fachsemester:  |

| zweimalig                  | 2 |
|----------------------------|---|
| Maximale Studierendenzahl: |   |
| 40                         |   |

# Georg-August-Universität Göttingen Modul B.Biochem.425: Computergestützte Datenanalyse 4 C 3 SWS

#### Lernziele/Kompetenzen:

Nach erfolgreichem Abschluss des Moduls

- haben die Studierenden das Handwerkszeug für die "alltägliche" computergestützte Datenanalyse kennengelernt. Beginnend mit einer ersten, rein graphischen Datensichtung werden zunehmend komplexere Analyseverfahren (Fourier-, Wavelet-Transformationen, Filtertechniken, statistische Analysen) vorgestellt, mit denen die Studierenden in die Lage versetzt werden, die maximale Information aus ihren experimentellen Daten zu extrahieren.
- haben die Studierenden einen Einblick in Betriebssysteme erhalten und können einfache Skripte zu Automatisierung von Arbeitsabläufen erstellen.
- Können die Teilnehmer ihre Messdaten kritisch beurteilen und sind in der Lage publikationsfähige Darstellungen von Datensätzen zu erzeugen.
- besitzen sie die Fähigkeit, eigene Auswerteprogramme in einer modernen Skriptsprache (Matlab, Octave oder Python) zu entwickeln. Sie haben es gelernt, solche Programme auf Richtigkeit und Effizienz zu testen und gegebenenfalls Fehler zu "debuggen".
- haben sich die Teilnehmer eine Bibliothek aus "gebrauchs-fertigen" Routinen zur Datenanalyse (Regressions- und Fitfunktionen, FFT, Datenfilterung, etc.) aufgebaut, die sie in ihrem weiteren Studium in der Praxis anwenden können.

#### Arbeitsaufwand:

Präsenzzeit: 42 Stunden

Selbststudium: 78 Stunden

| Lehrveranstaltungen:                                                                 |       |
|--------------------------------------------------------------------------------------|-------|
| 1. Computergestützte Datenanalyse (Vorlesung)                                        | 2 SWS |
| 2. Computergestützte Datenanalyse (Übung)                                            | 1 SWS |
| Prüfung: Praktische Klausur am Computer (180 Minuten)                                |       |
| Prüfungsanforderungen:                                                               |       |
| Kenntnis der Programmiersprachen Python, Matlab und Octave. Numerische               |       |
| Bearbeitung komplexer experimenteller Daten. Kritische Interpretation und graphische |       |
| Präsentation der Daten und der Ergebnisse der Datenanalyse.                          |       |

| Zugangsvoraussetzungen:                  | Empfohlene Vorkenntnisse:                        |
|------------------------------------------|--------------------------------------------------|
| keine                                    | keine                                            |
| Sprache: Deutsch                         | Modulverantwortliche[r]: Prof. Dr. Burkhard Geil |
| Angebotshäufigkeit: Jedes Sommersemester | Dauer:<br>1 Semester                             |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester:                        |
| Maximale Studierendenzahl: 40            |                                                  |

| Georg-August-Universität Göttingen            | 12 C (Anteil SK: 2 |
|-----------------------------------------------|--------------------|
| Modul B.Biochem.430: Fachvertiefung Biochemie | 18 SWS             |

#### Lernziele/Kompetenzen:

Ziel ist es, dass die Studierenden in Gruppenarbeit die eigenständige Planung von biochemischen Experimenten und Organisation des Tagesplans, sowie den selbstständigen Umgang und die Bedienung von Labor-Geräten vermittelt bekommen. Die Anwendung biochemischer und molekularbiologischer Methoden sowie die Entwicklung eines Verständnisses der physikalisch-chemischen Grundlagen und Variablen dieser Methoden soll den Studierenden erlauben eine kritische Überprüfung der Ergebnisse durch entsprechende Kontrollen und ggf. eine Fehleranalyse durchzuführen.

Als Schlüsselkompetenzen werden Grundlagen zur Recherche und Auswertung wissenschaftlicher Primärliteratur, sowie die Durchführung von Experimenten und deren kritische Auswertung, Analyse und Präsentation vermittelt.

#### Arbeitsaufwand:

Präsenzzeit: 252 Stunden Selbststudium: 108 Stunden

2 C

 Lehrveranstaltung: B.Biochem.430-1 Vertiefungspraktikum (Praktikum)
 17 SWS

 Prüfung: Praktikumsbericht
 10 C

 Lehrveranstaltung: B.Biochem.430-L Literaturseminar
 1 SWS

#### Prüfungsanforderungen:

Prüfung: Präsentation (ca. 15 Minuten)

Die Studierenden sollen ein grundlegendes Verständnis von biochemischen Prozessen aufzeigen können. Dieses Verständnis der Methoden soll den Studierenden erlauben Versuche selbstständig zu planen, durchzuführen und putative Szenarien gedanklich durchzuspielen. Ferner sollen die Studierenden die Fähigkeit zur kritischen Auswertung der durchgeführten Versuche aufweisen. Dies soll ihnen ermöglichen weiterführende Experimente und Kontrollen abzuleiten. Neben dem theoretischen Verständnis sollen die Studierenden den Nachweis bringen, dass sie die durchgeführten Experimente, daraus resultierenden Beobachtungen und Schlussfolgerungen in Schrift und Wort darstellen können.

Grundlagen dazu bilden die im Praktikumsskript und im Literaturseminar behandelten Themen, wie z.B. die Expression und Reinigung von Proteinen, Aktivitätstests und Analysemethoden.

| Zugangsvoraussetzungen:                         | Empfohlene Vorkenntnisse:     |
|-------------------------------------------------|-------------------------------|
| Mindestens 120 C, darunter der erste            | keine                         |
| Studienabschnitt im Umfang von insgesamt 62 C   |                               |
| u. Pflichtmodule aus dem 2. Studienabschnitt im |                               |
| Umfang von mindestens 59 C                      |                               |
| Sprache:                                        | Modulverantwortliche[r]:      |
| Deutsch                                         | Dr. rer. nat. Achim Dickmanns |
| Angebotshäufigkeit:                             | Dauer:                        |

| Jedes Sommersemester           | 1 Semester                  |
|--------------------------------|-----------------------------|
| Wiederholbarkeit:<br>zweimalig | Empfohlenes Fachsemester: 6 |
| Maximale Studierendenzahl:     |                             |

| 0 4 411 4"4 6"44                                                                                                                                                                                                                                                        |                                                     | 40.0 (4.4.1) 01(.0)                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------|
| Georg-August-Universität Göttingen                                                                                                                                                                                                                                      |                                                     | 12 C (Anteil SK: 2<br>C)                 |
| Modul B.Biochem.431: Fachvertiefung Biophysikalische Chemie                                                                                                                                                                                                             |                                                     | 18 SWS                                   |
| Lernziele/Kompetenzen:  Nach erfolgreicher Absolvierung des Moduls sollte die bzw. der Studierende                                                                                                                                                                      |                                                     | Arbeitsaufwand: Präsenzzeit: 252 Stunden |
| <ul> <li>Sich in einem Teilgebiet der Biophysikalischen Chemie auskennen</li> <li>Selbstständig in ein Forschungsbiet einarbeiten und die wesentliche Literatur kennen</li> <li>Methoden und Techniken, die in dem Praktikum gelehrt werden, sowohl</li> </ul>          |                                                     | Selbststudium:<br>108 Stunden            |
| theoretisch als auch handwerklich beherrschen                                                                                                                                                                                                                           | gereriit werderii, eewerii                          |                                          |
| Lehrveranstaltung: B.Biochem.431-1 Vertiefungspraktikum (Laborpraktikum)  Inhalte: Laborpraktikum als Mitarbeit bei laufenden Forschungsprojekten                                                                                                                       |                                                     | 17 SWS                                   |
| Prüfung: Praktikumsbericht in Form einer wissenschaftlichen Kurzpublikation                                                                                                                                                                                             |                                                     | 10 C                                     |
| Lehrveranstaltung: B.Biochem.431-L Methoden der Biophysikalische Chemie (Seminar)                                                                                                                                                                                       |                                                     | 1 SWS                                    |
| Prüfung: Präsentation (ca. 30 Minuten)                                                                                                                                                                                                                                  |                                                     | 2 C                                      |
| Prüfungsanforderungen: Die Studierenden sollen                                                                                                                                                                                                                          |                                                     |                                          |
| <ul> <li>Ein Forschungsprojekt unter wissenschaftlicher Anleitung durchführen</li> <li>Die wissenschaftliche Arbeit beschreiben und dokumentieren</li> <li>Die Arbeit einem breiteren Publikum im Rahmen eines wissenschaftlichen Vortrags zugänglich machen</li> </ul> |                                                     |                                          |
| Zugangsvoraussetzungen: Mindestens 120 C, darunter der erste Studienabschnitt im Umfang von insgesamt 62 C u. Pflichtmodule aus dem 2. Studienabschnitt im Umfang von mindestens 59 C                                                                                   | Empfohlene Vorkenntnisse:<br>keine                  |                                          |
| Sprache: Deutsch                                                                                                                                                                                                                                                        | Modulverantwortliche[r]: Prof. Dr. Andreas Janshoff |                                          |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                                                                                                                                                | Dauer: 1 Semester                                   |                                          |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                                                                                                          | Empfohlenes Fachsemester:                           |                                          |
| Maximale Studierendenzahl:                                                                                                                                                                                                                                              |                                                     |                                          |

| Georg-August-Universität Göttingen                     | 12 C (Anteil SK: 2 |
|--------------------------------------------------------|--------------------|
| Modul B.Biochem.432: Fachvertiefung Molekulare Genetik | 18 SWS             |

#### Lernziele/Kompetenzen:

Die Studierenden erwerben Grundlagenwissen über klassische und molekulare Genetik und Zellbiologie, erhalten einen Überblick über genetische, molekularbiologische und zellbiologische Methoden und eine praktische Einführung in die Methoden der Genetik am Beispiel eukaryotischer Mikroorganismen. Das Methodenspektrum wird im Kontext der geplanten Bachelorarbeit individuell ergänzt durch ausgewählte biochemischproteomische und zellbiologische Methoden.

Arbeitsaufwand:
Präsenzzeit:
252 Stunden
Selbststudium:
108 Stunden

Nach erfolgreichem Absolvieren sind sie in der Lage, vorgegebene Praktikumsversuche selbständig zu planen und durchzuführen, Primärdaten zu dokumentieren, Ergebnisse kritisch zu überprüfen, wissenschaftliche Primärliteratur zu recherchieren, auszuwerten und zu präsentieren.

| Lehrveranstaltung: B.Biochem.432-1 Vertiefungspraktikum (Praktikum) | 17 SWS |
|---------------------------------------------------------------------|--------|
| Prüfung: Praktikumsbericht und Vortrag (ca. 15 Min.)                | 10 C   |

| Lehrveranstaltung: B.Biochem.432-L Literaturseminar | 1 SWS |
|-----------------------------------------------------|-------|
| Prüfung: Präsentation (ca. 15 Minuten)              | 2 C   |

#### Prüfungsanforderungen:

Grundlegendes Verständnis der Molekularen Genetik und Zellbiologie. Fähigkeiten zur Durchführung und Planung von Versuchen in den Disziplinen Genetik und molekularer Zellbiologie. Kompetenzen in der graphischen und sprachlichen Darstellung von Forschungsergebnissen.

| Zugangsvoraussetzungen: Mindestens 120 C, darunter der erste Studienabschnitt im Umfang von insgesamt 62 C u. Pflichtmodule aus dem 2. Studienabschnitt im Umfang von mindestens 59 C | Empfohlene Vorkenntnisse:<br>B.Bio.129               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Sprache: Deutsch                                                                                                                                                                      | Modulverantwortliche[r]: Prof. Dr. Stefanie Pöggeler |
| Angebotshäufigkeit: Jedes Wintersemester                                                                                                                                              | Dauer: 1 Semester                                    |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                        | Empfohlenes Fachsemester: 5                          |
| Maximale Studierendenzahl:                                                                                                                                                            |                                                      |

| Georg-August-Universität Göttingen                                                                                                                                                                                                                                                                                                  |                                    | 12 C (Anteil SK: 2                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------|
| Modul B.Biochem.433: Fachvertiefung Zellbiologie                                                                                                                                                                                                                                                                                    |                                    | C)<br>18 SWS                                                        |
| Lernziele/Kompetenzen: Die Studierenden erwerben Kenntnisse ausgewählter Themen der Zellbiologie am Beispiel von verschiedenen Modellorganismen. Sie erlernen zellbiologische Methoden, welche im Kontext der geplanten Bachelorarbeit individuell durch ausgewählte biochemische und molekularbiologische Methoden ergänzt werden. |                                    | Arbeitsaufwand: Präsenzzeit: 252 Stunden Selbststudium: 108 Stunden |
| Nach erfolgreichem Absolvieren sind sie in der Lage, vorgegebene Praktikumsversuche selbständig zu planen und durchzuführen, Primärdaten zu dokumentieren, Ergebnisse kritisch zu überprüfen, wissenschaftliche Primärliteratur zu recherchieren, auszuwerten und zu präsentieren.                                                  |                                    |                                                                     |
| Lehrveranstaltung: B.Bio.433-1 Vertiefungspraktikum (Praktikum)                                                                                                                                                                                                                                                                     |                                    | 17 SWS                                                              |
| Prüfung: Praktikumsbericht                                                                                                                                                                                                                                                                                                          |                                    | 10 C                                                                |
| Lehrveranstaltung: B.Bio.433-L Literaturseminar                                                                                                                                                                                                                                                                                     |                                    | 1 SWS                                                               |
| Prüfung: Präsentation (ca. 15 Minuten)                                                                                                                                                                                                                                                                                              |                                    | 2 C                                                                 |
| Prüfungsanforderungen: Grundlegende Stoffkenntnisse und einen Überblick über Grundprinzipien der zellbiologischen Methodik und den Einsatz von Modellorganismen.                                                                                                                                                                    |                                    |                                                                     |
| Zugangsvoraussetzungen: Mindestens 120 C, darunter der erste Studienabschnitt im Umfang von insgesamt 62 C u. Pflichtmodule aus dem 2. Studienabschnitt im Umfang von mindestens 59 C                                                                                                                                               | Empfohlene Vorkenntnisse:<br>keine |                                                                     |
| Sprache:     Modulverantwortliche[r]:       Deutsch     Prof. Dr. Volker Lipka                                                                                                                                                                                                                                                      |                                    |                                                                     |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                                                                                                                                                                                                            | Dauer: 1 Semester                  |                                                                     |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                                                                                                                                                                      | Empfohlenes Fachsemester: 6        |                                                                     |
| Maximale Studierendenzahl:                                                                                                                                                                                                                                                                                                          |                                    |                                                                     |

| Georg-August-Universität Göttingen 12 C (Anteil SK: 2                                                                                                                                                                                                                                                                                                |                                                    |                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|
| Modul B.Biochem.435: Fachvertiefung Biomolekulare Chemie                                                                                                                                                                                                                                                                                             |                                                    | C)<br>18 SWS                                                        |
| Lernziele/Kompetenzen: Nach erfolgreicher Teilnahme an diesem Modul sollte der Studierende  • gängige lipid- und proteinchemische Verfahren beherrschen  • verschiedene artifizielle Membranen herstellen und analysieren können  • Proteine in Lipidmembranen rekonstituieren können  • die Funktionalität eines Membranproteins untersuchen können |                                                    | Arbeitsaufwand: Präsenzzeit: 252 Stunden Selbststudium: 108 Stunden |
| Lehrveranstaltung: B.Biochem.435-1 Vertiefungspraktikum (Laborpraktikum)  Inhalte: Laborpraktikum als Mitarbeit bei laufenden Forschungsprojekten                                                                                                                                                                                                    |                                                    | 17 SWS                                                              |
| Prüfung: Praktikumsbericht in Form einer wissens                                                                                                                                                                                                                                                                                                     | schaftlichen Kurzpublikation                       | 10 C                                                                |
| Lehrveranstaltung: B.Biochem.435-L Methoden der Biomolekulare Chemie (Seminar)                                                                                                                                                                                                                                                                       |                                                    | 1 SWS                                                               |
| Prüfung: Präsentation (ca. 30 Minuten)                                                                                                                                                                                                                                                                                                               |                                                    | 2 C                                                                 |
| Prüfungsanforderungen: Vertieftes Wissen und Verständnis von biomolekularen Prozessen an natürlichen und artifiziellen Membranen. Fähigkeit zur eigenständigen Auswertung von durchgeführten Versuchen.                                                                                                                                              |                                                    |                                                                     |
| Zugangsvoraussetzungen: Mindestens 120 C, darunter der erste Studienabschnitt im Umfang von insgesamt 62 C u. Pflichtmodule aus dem 2. Studienabschnitt im Umfang von mindestens 59 C                                                                                                                                                                | Empfohlene Vorkenntnisse:<br>keine                 |                                                                     |
| Sprache: Deutsch                                                                                                                                                                                                                                                                                                                                     | Modulverantwortliche[r]: Prof. Dr. Claudia Steinem |                                                                     |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                                                                                                                                                                                                                             | Dauer:<br>1 Semester                               |                                                                     |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                                                                                                                                                                                       | Empfohlenes Fachsemester:                          |                                                                     |
| Maximale Studierendenzahl:                                                                                                                                                                                                                                                                                                                           |                                                    |                                                                     |

| Georg-August-Universität Göttingen                         | 12 C (Anteil SK: 2 |
|------------------------------------------------------------|--------------------|
| Modul B.Biochem.436: Fachvertiefung Bioanorganische Chemie | C)<br>18 SWS       |

#### Lernziele/Kompetenzen:

Nach erfolgreicher Absolvierung des Moduls sollten die Studierenden anhand einer aktuellen wissenschaftlichen Fragestellung aus dem Bereich der Bioanorganischen Chemie oder biomimetischen Koordinationschemie

- Grundzüge wissenschaftlichen Arbeitens und praktisches Arbeiten in der Forschung erfahren haben,
- Grundkenntnisse zur Rolle von Metallen in Lebensprozessen erworben haben
- durch angeleitete Mitarbeit an einem Forschungsprojekt in einem thematisch auf das Forschungsgebiet begrenzten Rahmen vertiefte theoretische Kenntnisse und praktische Fertigkeiten erworben haben
- experimentelle Arbeitstechniken und die Anwendung analytischer Methoden erlernt haben, und
- zur Dokumentation und Präsentation wissenschaftlicher Ergebnisse fähig sein.

#### Arbeitsaufwand:

Präsenzzeit: 252 Stunden Selbststudium: 108 Stunden

| Lehrveranstaltung: B.Biochem.436-1 Vertiefungspraktikum (Praktikum) | 17 SWS |
|---------------------------------------------------------------------|--------|
| Prüfung: Praktikumsbericht                                          | 10 C   |

| Lehrveranstaltung: B.Biochem.436-L Literaturseminar | 1 SWS |
|-----------------------------------------------------|-------|
| Prüfung: Präsentation (ca. 15 Minuten)              | 2 C   |

#### Prüfungsanforderungen:

Die Ergebnisse der praktischen Mitarbeit am Forschungsprojekt sollen in einem Bericht zusammengestellt werden, der in Form eines Publikationsmanuskripts verfasst werden soll. Zudem sollen im Rahmen eines Vortrags die Forschungsfragestellung in einen größeren Zusammenhang gestellt, die Ergebnisse präsentiert und diskutiert werden.

| Zugangsvoraussetzungen: Mindestens 120 C, darunter der erste Studienabschnitt im Umfang von insgesamt 62 C u. Pflichtmodule aus dem 2. Studienabschnitt im Umfang von mindestens 59 C | Empfohlene Vorkenntnisse:  B.Che.1004.1 (Methoden der Chemie I) und  B.Che.1004.2 (Methoden der Chemie II) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Sprache: Deutsch                                                                                                                                                                      | Modulverantwortliche[r]: Prof. Dr. Franc Meyer                                                             |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                                                              | Dauer:<br>1 Semester                                                                                       |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                        | Empfohlenes Fachsemester:                                                                                  |
| Maximale Studierendenzahl:                                                                                                                                                            |                                                                                                            |

| Georg-August-Universität Göttingen 12 C (Anteil SK:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|
| Modul B.Biochem.437: Fachvertiefung Bioorganische Chemie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | C)<br>18 SWS                                                        |
| Lernziele/Kompetenzen: Nach erfolgreicher Absolvierung des Moduls sollten die Studierenden anhand einer aktuellen wissenschaftlichen Fragestellung aus dem Bereich der Peptid-, Oligonucleotid-, Saccharid- oder Lipidmembranchemie Grundzüge wissenschaftlichen Arbeitens und praktisches Arbeiten in der Forschung erfahren. Durch angeleitete Mitarbeit an einem Promotionsprojekt sollen in einem thematisch auf das Forschungsgebiet begrenzten Rahmen theoretische Kenntnisse und praktische Fertigkeiten sowie Umgang mit Arbeitstechniken, Analytik, Dokumentation und Präsentation vermittelt werden. |                                                     | Arbeitsaufwand: Präsenzzeit: 252 Stunden Selbststudium: 108 Stunden |
| Lehrveranstaltung: B.Biochem.437-1 Vertiefungspraktikum (Laborpraktikum)  Inhalte: Laborpraktikum als Mitarbeit bei laufenden Forschungsprojekten                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | 17 SWS                                                              |
| Prüfung: Praktikumsbericht in Form einer wissenschaftlichen Kurzpublikation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | 10 C                                                                |
| Lehrveranstaltung: B.Biochem.437-L Methoden der Bioorganischen Chemie (Seminar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | 1 SWS                                                               |
| Prüfung: Präsentation (ca. 20 Minuten)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     | 2 C                                                                 |
| Prüfungsanforderungen: Die praktische Mitarbeit am Forschungsprojekt soll in einen Bericht umgesetzt werden, der in Form eines Publikationsmanuskripts verfasst werden soll. Zudem sollen in einem Vortrag die Forschungsfragestellung in einen größeren Zusammenhang dargestellt und die Ergebnisse vorgestellt und diskutiert werden.                                                                                                                                                                                                                                                                        |                                                     |                                                                     |
| Zugangsvoraussetzungen: Mindestens 120 C, darunter der erste Studienabschnitt im Umfang von insgesamt 62 C u. Pflichtmodule aus dem 2. Studienabschnitt im Umfang von mindestens 59 C                                                                                                                                                                                                                                                                                                                                                                                                                          | Empfohlene Vorkenntnisse:<br>keine                  |                                                                     |
| Sprache: Deutsch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Modulverantwortliche[r]: Prof. Dr. Ulf Diederichsen |                                                                     |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dauer:<br>1 Semester                                |                                                                     |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Empfohlenes Fachsemester:                           |                                                                     |
| Maximale Studierendenzahl:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                     |

| Georg-August-Universität Göttingen                                                                                                                                                                                                                                                                                                                                                                             | 12 C (Anteil SK: 2                              |                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|
| Modul B.Biochem.438: Fachvertiefung Bioanalytik                                                                                                                                                                                                                                                                                                                                                                |                                                 | C)<br>18 SWS                             |
| Lernziele/Kompetenzen:  Nach erfolgreicher Teilnahme an diesem Modul sollte der Studierende                                                                                                                                                                                                                                                                                                                    |                                                 | Arbeitsaufwand: Präsenzzeit: 252 Stunden |
| <ul> <li>Selbständig bioanalytische Experimente konzipieren, reproduzierbar durchführen und auswerten können</li> <li>Die biophysikalischen/biochemischen Grundlagen der verwendeten Methoden kennen</li> <li>Die Regeln der guten wissenschaftlichen Praxis kennen und befolgen</li> </ul>                                                                                                                    |                                                 | Selbststudium:<br>108 Stunden            |
| Lehrveranstaltung: B.Biochem.438-1 Vertiefungspraktikum (Praktikum)                                                                                                                                                                                                                                                                                                                                            |                                                 | 17 SWS                                   |
| Prüfung: Praktikumsbericht                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | 10 C                                     |
| Lehrveranstaltung: B.Biochem.438-L Literaturseminar                                                                                                                                                                                                                                                                                                                                                            |                                                 | 1 SWS                                    |
| Prüfung: Präsentation (ca. 15 Minuten)                                                                                                                                                                                                                                                                                                                                                                         |                                                 | 2 C                                      |
| Prüfungsanforderungen:  Molekularbiologische Methoden (Klonierung von Genen, ortsgerichtete Mutagenese, heterologe Expression von Proteinen); biophysikalische Charakterisierung von Biomakromolekülen (Fluoreszensspektroskopie, Circulardichroismus Spektroskopie, isothermale Titrationskalorimetrie); kinetische Charakterisierung biochemischer Reaktionen mittels stopped-flow und quench-flow Techniken |                                                 |                                          |
| Zugangsvoraussetzungen: Mindestens 120 C, darunter der erste Studienabschnitt im Umfang von insgesamt 62 C u. Pflichtmodule aus dem 2. Studienabschnitt im Umfang von mindestens 59 C                                                                                                                                                                                                                          | Empfohlene Vorkenntnisse:<br>Semester 1-4       |                                          |
| Sprache: Deutsch                                                                                                                                                                                                                                                                                                                                                                                               | Modulverantwortliche[r]: Prof. Dr. Kai Tittmann |                                          |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                                                                                                                                                                                                                                                                                       | Dauer:<br>1 Semester                            |                                          |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                                                                                                                                                                                                                                                 | Empfohlenes Fachsemester:                       |                                          |
| Maximale Studierendenzahl:                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                          |

| Georg-August-Universität Göttingen                                                             | 6 C<br>1 SWS    |
|------------------------------------------------------------------------------------------------|-----------------|
| Modul B.Biochem.490: Gute wissenschaftliche Praxis und Projekt-<br>management in der Biochemie | 1 3003          |
| Lernziele/Kompetenzen:                                                                         | Arbeitsaufwand: |
| Die Studierenden werden mit zentrale Aspekten der wissenschaftlichen Praxis bekannt            | Präsenzzeit:    |
| gemacht, dazu gehören Formen der wissenschaftlichen Kommunikation ebenso                       | 14 Stunden      |
| wie Qualitätssicherung und das Einwerben von Drittmitteln. Schlüsselkompetenzen:               | Selbststudium:  |
| Wissenschaftliches Projektmanagement, insbesondere Arbeitstechniken zur Recherche              | 166 Stunden     |
| und Auswertung wissenschaftlicher Primärliteratur, Kritisches Denken, Präsentation,            |                 |
| Planung von Experimenten und Selbstorganisation.                                               |                 |

| Lehrveranstaltung: B.Biochem.490-1 Gute wissenschaftliche Praxis (Vorlesung) | 1 SWS |
|------------------------------------------------------------------------------|-------|
| Prüfung: Klausur (45 Minuten)                                                |       |

| Lehrveranstaltung: B.Biochem.490-2 Wissenschaftliches Projektmanagement  |     | 1 |
|--------------------------------------------------------------------------|-----|---|
| Prüfung: Projektantrag für eine wissenschaftliche bzw. angewandte Arbeit | 4 C | 1 |

### Prüfungsanforderungen:

490-1: Auseinandersetzung mit aktuellen Themen aus dem Bereich der Vorlesung im Rahmen eines kurzen Aufsatzes

490-2: Erarbeitung eines "Proposals" als Arbeitsgrundlage für die Bachelorarbeit.

| Zugangsvoraussetzungen: keine                                                  | Empfohlene Vorkenntnisse:<br>keine               |
|--------------------------------------------------------------------------------|--------------------------------------------------|
| Sprache: Deutsch                                                               | Modulverantwortliche[r]: Prof. Dr. Julia Fischer |
| Angebotshäufigkeit: B.Biochem.490.1 jedes WiSe; B.Biochem.490.2 jedes Semester | Dauer:<br>2 Semester                             |
| Wiederholbarkeit:<br>zweimalig                                                 | Empfohlenes Fachsemester:<br>5 - 6               |
| Maximale Studierendenzahl: 40                                                  |                                                  |

# Georg-August-Universität Göttingen Modul B.Bio-NF.111: Anthropologie 6 C 4 SWS

#### Lernziele/Kompetenzen:

Heiratsmuster und Migration

Die Studierenden erhalten einen Überblick und Einblick in die Evolution des Menschen und seiner Primaten-Verwandten bezüglich ihrer physischen Ausstattung, ihres Verhaltens und molekularer Systeme sowie in Coevolutionen von biologischen und kulturellen Merkmalen bzw. Errungenschaften. Die Studierenden lernen die biologischen Anteile anthropologischer Fragestellungen zu erkennen, zu analysieren und die Verbindung zu kulturellen, ökologischen bzw. verhaltensbiologischen Fragenkomplexen herzustellen.

Sie erhalten einen Überblick über die Hauptgebiete der biologischen Anthropologie, einen Überblick und Einblick in erkenntnistheoretische Grundlagen und Ableitungen in der Anthropologie und erlenen die fachspezifische Methodik der Stammesgeschichte, der Historischen Anthropologie, der Verhaltensbiologie von Primaten, der Molekularen Anthropologie, der Humanökologie und der Humanethologie.

#### Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:

Mechanismen der Evolution, Speziation und Phylogenie, Evolution des Menschen,
Populationsdifferenzierung, Lebenslaufstrategien, Biologie der Primaten, Ökologie
der Primaten, Stammesgeschichte der Primaten, Evolution von Sozialsystemen,
Sexuelle Selektion, Sozialstrukturen nicht-menschlicher Primaten, Evolution
menschlichen Verhaltens, Fortpflanzungsstrategien des Menschen, Paläodemographie,
Paläopathologie, Paläoepidemiologie, Sozialstrukturen menschlicher Gesellschaften,

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse: Biologische Grundkenntnisse              |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Sprache: Deutsch  Angebotshäufigkeit: Jedes Sommersemester                                                                                    | Modulverantwortliche[r]: Prof. Dr. PM. Kappeler  Dauer: 1 Semester |
| Wiederholbarkeit:<br>zweimalig                                                                                                                | Empfohlenes Fachsemester:                                          |
| Maximale Studierendenzahl: 20                                                                                                                 |                                                                    |

| Georg-August-Universität Göttingen<br>Modul B.Bio-NF.114-2: Grundlagen der Bioinformatik                                                                                                                                                                                                                     |                                                                               | 6 C             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                              |                                                                               | 4 SWS           |
| Lernziele/Kompetenzen:                                                                                                                                                                                                                                                                                       |                                                                               | Arbeitsaufwand: |
| Die Studierenden lernen grundlegende Methoden der Bioinformatik kennen. Nach                                                                                                                                                                                                                                 |                                                                               | Präsenzzeit:    |
| dem erfolgreichen Teilnahme an diesem Modul verfügen sie über Grundkenntnisse                                                                                                                                                                                                                                |                                                                               | 56 Stunden      |
| in den Bereichen Dynamisches Programmieren, Sequenzalignment, Rekonstruktion                                                                                                                                                                                                                                 |                                                                               | Selbststudium:  |
| phylogenetischer Bäume und haben einen Einblick in grundlegende Ansätze der bioinformatischen Analyse von Molekülstrukturen.                                                                                                                                                                                 |                                                                               | 124 Stunden     |
| Lehrveranstaltung: Einführung in die angewandte Bioinformatik (Vorlesung)                                                                                                                                                                                                                                    |                                                                               | 4 SWS           |
| Prüfung: Mündlich (ca. 30 Minuten) Prüfungsanforderungen: Grundlegende Methoden und Algorithmen der Bioinformatik: Paarweises und multiples Alignment, Hidden-Markov-Modelle, Grundlegende Algorithmen zur Rekonstruktion phylogenetischer Bäume, Algorithmen zur Analyse von Molekülstrukturen, Datenbanken |                                                                               |                 |
| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt                                                                                                                                                                                                                         | Empfohlene Vorkenntnisse: B.Bio.113, SK.Bio.114-1 Biologische Grundkenntnisse |                 |
| Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen                                                                                                                                                                                                                                                     |                                                                               |                 |
| Sprache:                                                                                                                                                                                                                                                                                                     | Modulverantwortliche[r]:                                                      |                 |
| Deutsch                                                                                                                                                                                                                                                                                                      | Prof. Dr. Burkhard Morgenstern                                                |                 |
| Angebotshäufigkeit:                                                                                                                                                                                                                                                                                          | Dauer:                                                                        |                 |
| Jedes Sommersemester                                                                                                                                                                                                                                                                                         | 1 Semester                                                                    |                 |
| Wiederholbarkeit:                                                                                                                                                                                                                                                                                            | Empfohlenes Fachsemester:                                                     |                 |
| zweimalig                                                                                                                                                                                                                                                                                                    | 6                                                                             |                 |
| Maximale Studierendenzahl:                                                                                                                                                                                                                                                                                   |                                                                               |                 |

#### Georg-August-Universität Göttingen 6 C 4 SWS Modul B.Bio-NF.116: Allgemeine Entwicklungs- und Zellbiologie Arbeitsaufwand: Lernziele/Kompetenzen: Die Studierenden lernen entwicklungsbiologisch relevante Aspekte der Zellbiologie, Präsenzzeit: zentrale Themen der tierischen und pflanzlichen Entwicklungsbiologie, klassische 56 Stunden und molekularbiologische Methoden der Entwicklungsbiologie und Modellorganismen Selbststudium: kennen. 124 Stunden Lehrveranstaltung: Allgemeine Entwicklungs- und Zellbiologie (Vorlesung) 4 SWS Prüfung: Klausur (90 Minuten) Prüfungsanforderungen: Die Studierenden sollen zu folgenden Themen Aussagen auf ihren Wahrheitsgehalt überprüfen können, stichpunktartig Fragen dazu beantworten können und die jeweiligen Grundlagen korrekt darstellen bzw. miteinander vergleichen können: Aufbau der Zelle, Zellkompartimente, Zytoskelett, Mitochondrien, Membranstruktur und transport, Zellkontakte und -kommunikation, Zellzyklus, Zellteilung, programmierter Zelltod, Kontrolle der eukaryotischen Genexpression, Allgemeine Mechanismen der Entwicklung, Keimzellen und Befruchtung, Furchung, Prinzipien der Musterbildung, Gestaltbildung, Gastrulation, Neurulation, Organogenese, Zellbewegungen, Zellformveränderungen, Methoden der experimentellen Embryologie, Methoden der Entwicklungsgenetik, Kenntnis von Modellorganismen, Achsenbildung, Segmentierungsgene, Homöotische Selektorgene, Evolutionäre Entwicklungsbiologie, Neuronale Entwicklung, Stammzellen und Regeneration, Homöostase, Krebsentstehung, Pflanzenembryogenese, Dormanz und Keimung, Lichtabhängige Entwicklung, Phytohormone, Evolution und Genetik der Blütenbildung. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** Für BSc Bio: mindestens 40 C aus dem ersten Biologische Grundkenntnisse Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Ernst A. Wimmer Angebotshäufigkeit: Dauer: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl:

25

| Georg-August-Universität Göttingen | 6 C   |
|------------------------------------|-------|
| Modul B.Bio-NF.118: Mikrobiologie  | 4 SWS |

# Lernziele/Kompetenzen: Die Studierenden erwerben ein solides Grundlagenwissen über Systematik, Zellbiologie, Wachstum und Vermehrung, Stoffwechselvielfalt und die ökologische, medizinische und biotechnologische Bedeutung von Mikroorganismen. Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, verschiedene Mikroorganismen zu unterscheiden und sie kennen wesentliche biotechnologische Prozesse sowie Mechanismen, mit denen pathogene Keime den Wirt angreifen.

| Lehrveranstaltung: Allgemeine Mikrobiologie (Vorlesung)                             | 4 SWS |
|-------------------------------------------------------------------------------------|-------|
| Prüfung: Klausur (120 Minuten)                                                      |       |
| Prüfungsanforderungen:                                                              |       |
| In der Prüfung werden die Grundlagen der Mikrobiologie bezüglich der systematischen |       |
| Einordnung, verschiedener Stoffwechselwege, Zellbiologie, der Bedeutung von         |       |
| Mikroorganismen für Industrie, Umwelt und Medizin sowie ihre praktische Umsetzung   |       |
| addressiert. Die Studierenden sollen tagesaktuelle Ereignisse mit Bezug zur         |       |
| Mikrobiologie einordnen können.                                                     |       |

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse: Biologische Grundkenntnisse |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Sprache: Deutsch                                                                                                                              | Modulverantwortliche[r]: Prof. Dr. Jörg Stülke        |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                      | Dauer: 1 Semester                                     |
| Wiederholbarkeit:<br>zweimalig                                                                                                                | Empfohlenes Fachsemester:                             |
| Maximale Studierendenzahl:<br>15                                                                                                              |                                                       |

| Coorg / tagaot Cinvoloitat Cottingon                | 3 C   |
|-----------------------------------------------------|-------|
| Modul B.Bio-NF.119-1: Kognitive Neurowissenschaften | 2 SWS |

| Lernziele/Kompetenzen:                                                                                                                                  | Arbeitsaufwand:   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Nach Abschluss des Moduls besitzen die Studierenden ein Verständnis der zentralen                                                                       | Präsenzzeit:      |
| Verarbeitung von Sinnesinformationen und der Generierung von motorischem                                                                                | 28 Stunden        |
| Verhalten. Sie erwerben Kenntnisse in den Themengebieten Lernen, Gedächtnis,                                                                            | Selbststudium: 62 |
| Hormone, Stress, Aufmerksamkeit, Chronobiologie, Homöostase, Sexualität, Emotionen                                                                      | Stunden           |
| und Sprache.                                                                                                                                            |                   |
| Lehrveranstaltung: Kognitive Neurowissenschaften (Vorlesung)                                                                                            | 2 SWS             |
| Prüfung: Klausur (30 Minuten)                                                                                                                           |                   |
| Prüfungsanforderungen:                                                                                                                                  |                   |
|                                                                                                                                                         |                   |
| Die Studierenden sollen das in der Vorlesung vermittelte Grundwissen der                                                                                |                   |
| Die Studierenden sollen das in der Vorlesung vermittelte Grundwissen der Biopsychologie beherrschen können. Sie sollen die Fähigkeit besitzen, über die |                   |
|                                                                                                                                                         |                   |

darzustellen sowie das erworbene Wissen auf neue Situationen anzuwenden.

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse: Vorlesung "Biopsychologie I"; Grundkenntnisse der Neurobiologie |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Sprache: Deutsch                                                                                                                              | Modulverantwortliche[r]: Prof. Dr. Stefan Treue                                           |
| Angebotshäufigkeit: Jedes Wintersemester                                                                                                      | Dauer: 1 Semester                                                                         |
| Wiederholbarkeit:<br>zweimalig                                                                                                                | Empfohlenes Fachsemester: 5                                                               |
| Maximale Studierendenzahl:<br>25                                                                                                              |                                                                                           |

### Georg-August-Universität Göttingen Modul B.Bio-NF.119-2: Theoretische Neurowissenschaften 4 C 3 SWS

#### Lernziele/Kompetenzen:

Die Studierenden erwerben einen Einblick in die systemischen und theoretischen Neurowissenschaften und in die Biologie des Verhaltens. Sie lernen die zentralen Konzepte und Forschungsmethoden in diesen Forschungsfeldern kennen und erarbeiten sich eine Vertiefung in einzelnen Themen aus diesen Bereichen. Die Themen umfassen: Modelle der Membran, elektrische Fortleitung, neuronale Kodierung und neuronale Rechenoperationen, Lernen, Gedächtnis sowie neuronale Repräsentationen. Alle Teilnehmer und Teilnehmerinnen erlernen dabei insbesondere auch die Bedeutung neuronaler Modellierung für das Verständnis von Verhalten und den perzeptionellen und motorischen Leistungen von Tieren und Menschen.

#### Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium: 78

Stunden

Prüfung: Klausur (30 Minuten)
Prüfungsanforderungen:
Die Studierenden sollen Probleme aus den oben genannten Teilgebieten, die der systemischen Neurobiologie und ihrer theoretischen Beschreibung entstammen, qualitativ und quantitativ bearbeiten können; sie sollen die Fähigkeit nachweisen, verhaltensbiologische Befunde theoretisch nachzuvollziehen; sowie Kenntnisse über Forschungsmethoden zur Gewinnung theoretischer Befunde und theoretisches Verständnis verschiedener neuronaler Modellierungsansätze durch die Prüfung nachweisen können.

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse: Biologische und mathematische Grundkenntnisse           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Sprache: Deutsch  Angebotshäufigkeit: Jedes Sommersemester                                                                                    | Modulverantwortliche[r]: Prof. Dr. Florentin Andreas Wörgötter  Dauer: 1 Semester |
| Wiederholbarkeit: zweimalig                                                                                                                   | Empfohlenes Fachsemester: 6                                                       |
| Maximale Studierendenzahl: 25                                                                                                                 |                                                                                   |

### Georg-August-Universität Göttingen Modul B.Bio-NF.119-3: Neuro- und Verhaltensbiologie

#### Lernziele/Kompetenzen:

Die Studierenden sollen ein Verständnis entwickeln für Gestalt und Funktion von Nervenzellen und die zellulären Besonderheiten erregbarer Zellen (Ruhemembranpotential, Aktionspotential-Generierung, Erregungsfortleitung, Transmitterausschüttung, Ionenkanäle, Rezeptoren, second-messenger-Kaskaden, axonaler Transport). Darauf aufbauend sollen die Studierenden ein Verständnis für die Beziehungen zwischen neuronalen Schaltkreisen und einfachen Verhaltensweisen entwickeln (central pattern generators, Reflexe, Taxisbewegungen). Die Studierenden sollen konzeptionell lernen, wie neuronale Verknüpfungen durch Erfahrung modifiziert werden (zelluläre Grundlagen von Lernen und Gedächtnis) und verschiedene Arten der erfahrungsabhängigen Verhaltensmodifikation sowie deren neuronale Substrate kennen lernen. Die verhaltensbiologischen Grundlagen von Orientierung, Aggressionsverhalten, Paarbindungsverhalten, Kommunikation, zirkadianer Rhythmik, Motivation sowie Sozialverhalten in Gruppen sollen den Studierenden vermittelt werden.

#### Arbeitsaufwand:

Präsenzzeit: 30 Stunden

2 SWS

Selbststudium: 60 Stunden

#### Lehrveranstaltung: Neuro- und Verhaltensbiologie (Vorlesung)

Prüfung: Klausur (30 Minuten)

#### Prüfungsanforderungen:

Die Studierenden sollen Aussagen zu Fakten und Zusammenhängen aus den Bereichen der Neuro- und Verhaltensbiologie auf ihren Wahrheitsgehalt überprüfen können; sie sollen stichpunktartig Fragen nach Aufbau und Funktionen von Nervenzellen und einfachen neuronalen Schaltkreisen beantworten können; sie sollen weiterhin die neuronalen Grundlagen einfacher Verhaltensweisen sowie die konzeptionellen Mechanismen von komplexeren Verhaltensweisen korrekt darstellen und miteinander vergleichen können.

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse: Biologische Grundkenntnisse  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Sprache: Deutsch  Angebotshäufigkeit:                                                                                                         | Modulverantwortliche[r]: Prof. Dr. Andre Fiala  Dauer: |
| Jedes Sommersemester                                                                                                                          | 1 Semester                                             |
| Wiederholbarkeit:<br>zweimalig                                                                                                                | Empfohlenes Fachsemester: 6                            |
| Maximale Studierendenzahl: 25                                                                                                                 |                                                        |

liegenden empirische Befunde zu untersuchen.

Lehrveranstaltung: Biopsychologie I (Vorlesung)

### Georg-August-Universität Göttingen Modul B.Bio-NF.119-4: Biologische Psychologie I 4 C 2 SWS

# Lernziele/Kompetenzen: Die Studierenden sind in der Lage zentrale Konzepte und Forschungsmethoden der Biopsychologie; Neuro-, Sinnes- und Motorphysiologie, Lernen, Gedächtnis, Aufmerksamkeit, Psychopathologie, Hormone, Stress, Chronobiologie, Homöostase, Sexualität, Emotionen zu überblicken. Neben dem Wissenserwerb lernen die Studierenden analytisch zu denken, methodisch zu reflektieren sowie kritisch wissenschaftliche Theorien auf die ihnen zu Grunde

| Prüfung: Klausur (30 Minuten)                                                            |  |
|------------------------------------------------------------------------------------------|--|
| Prüfungsanforderungen:                                                                   |  |
| Die Studierenden erbringen den Nachweis, dass sie in der Lage sind, zentrale             |  |
| Konzepte und Forschungsmethoden der Biopsychologie; Neuro-, Sinnes- und                  |  |
| Motorphysiologie, Lernen, Gedächtnis, Aufmerksamkeit, Psychopathologie, Hormone,         |  |
| Stress, Chronobiologie, Homöostase, Sexualität, Emotionen zu überblicken. Neben          |  |
| dem Wissenserwerb lernen die Studierenden analytisch zu denken, methodisch zu            |  |
| reflektieren sowie kritisch wissenschaftliche Theorien auf die ihnen zu Grunde liegenden |  |
| empirischen Befunde zu untersuchen.                                                      |  |
|                                                                                          |  |

| Zugangsvoraussetzungen: keine            | Empfohlene Vorkenntnisse:<br>keine              |
|------------------------------------------|-------------------------------------------------|
| Sprache: Deutsch                         | Modulverantwortliche[r]: Prof. Dr. Stefan Treue |
| Angebotshäufigkeit: Jedes Wintersemester | Dauer: 1 Semester                               |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester: 5                     |
| Maximale Studierendenzahl: 25            |                                                 |

2 SWS

### Georg-August-Universität Göttingen Modul B.Bio-NF.123: Tierphysiologie 6 C 4 SWS

#### Lernziele/Kompetenzen:

Die Studierenden sollen ein Verständnis entwickeln für Gestalt und Funktion von Nervenzellen, Gliazellen und Sinneszellen sowie Sinnesorganen; ebenso Verständnis für Prinzipien zentraler Verarbeitung von Sinnesmeldungen. Sie sollen einen Einblick in die Funktion von Hormonsystemen und verschiedene vegetative Funktionen wie Atmung, Energiehaushalt, Verdauung und Exkretion erhalten. Sie sollen Einsicht gewinnen in die komplexen Wechselwirkungen physiologischer Leistungen des nervösen, sensorischen und vegetativen Systems und so nach Abschluss des Moduls physiologische Reaktionen eines Tieres besser beurteilen können. Sie sollen die Bedeutung einzelner physiologischer Leistungen für den gesamten Organismus beurteilen können und seine Anpassungsfähigkeit an die gegebenen Umweltbedingungen besser verstehen.

#### Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

 Lehrveranstaltung: Tierphysiologie (Vorlesung)
 4 SWS

 Prüfung: Klausur (120 Minuten)
 4 SWS

#### Prüfungsanforderungen:

Die Studierenden sollen Aussagen zu tierphysiologischen Fakten und Zusammenhängen aus den Bereichen Neuro-, Sinnes- und vegetativer Physiologie auf ihren Wahrheitsgehalt überprüfen können; sie sollen stichpunktartig Fragen nach Funktionen von Sinneszellen, Nervenzellen und Organen unter physiologischen Aspekten beantworten können; sie sollen Abläufe physiologischer Prozesse und ihre Grundlagen korrekt darstellen und miteinander vergleichen können.

Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** Für BSc Bio: mindestens 40 C aus dem ersten Biologische Grundkenntnisse Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Stumpner Prof. Dr. Andre Fiala Angebotshäufigkeit: Dauer: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl: 25

## Georg-August-Universität Göttingen Modul B.Bio-NF.124: Humangenetik 6 C 4 SWS

#### Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden sollen Kenntnisse über die molekularen Grundlagen der Vererbung Präsenzzeit: und der Genregulation beim Säuger erwerben und anhand von ausgewählten Beispielen 60 Stunden die Entstehung und Auswirkung von Gen- und Genommutationen und die Prinzipien Selbststudium: ihrer Analyse kennen lernen. Dabei wird auch die Kenntnis über grundlegende 120 Stunden genetische Prinzipien vertieft. Sie sollen Einsicht in die Grundlagen der Tumorgenetik und der experimentellen Humangenetik erwerben. Sie sollen die Prinzipien der wichtigsten Methoden zum Nachweis von Mutationen kennen lernen. Lehrveranstaltungen: 1. Humangenetik I (Vorlesung) 2 SWS 2 SWS 2. Allgemeine Genetik in der molekularen Medizin (Vorlesung)

Prüfung: Klausur (60 Minuten)
Prüfungsvorleistungen:

Regelmäßige Teilnahme an der Vorlesung Humangenetik I (2 Fehltermine)

#### Prüfungsanforderungen:

Entsprechend der o.g. Lernziele sollen die Studierenden Aussagen zu Fakten und Zusammenhängen aus den Bereichen der Molekularen Humangenetik, der Zytogenetik, der Formalen Genetik und der experimentellen Humangenetik auf ihren Wahrheitsgehalt überprüfen können; sie sollen stichpunktartig Fragen zur den behandelten genetischen Erkrankungen, zur Risikoermittlung und zu Mutationen und deren Nachweisverfahren beantworten können.

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse: Biologische Grundkenntnisse     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Sprache: Deutsch                                                                                                                              | Modulverantwortliche[r]: Prof. Dr. rer. nat. Iris Bartels |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                      | Dauer: 1 Semester                                         |
| Wiederholbarkeit:<br>zweimalig                                                                                                                | Empfohlenes Fachsemester:                                 |
| Maximale Studierendenzahl: 15                                                                                                                 |                                                           |

| Georg-August-Universität Göttingen                 |                                | 6 C             |
|----------------------------------------------------|--------------------------------|-----------------|
| Modul B.Bio-NF.126: Tier- und Pflanzend            | 3 SWS                          |                 |
| Lernziele/Kompetenzen:                             |                                | Arbeitsaufwand: |
| Nach erfolgreichem Abschluss des Moduls sollen S   | tudierende Kenntnisse in den   | Präsenzzeit:    |
| folgenden Themen besitzen und in der Lage sein, V  | erknüpfungen zwischen diesen   | 56 Stunden      |
| Themen herzustellen: Grundlagen der Pflanzen- un   | d Tierökologie, Ökophysiologie | Selbststudium:  |
| höherer und niederer Pflanzen, Aut- und Synökolog  | ie, Ökosystemforschung und     | 124 Stunden     |
| Ökologie von Bodensystemen.                        |                                |                 |
| Lehrveranstaltung: Ökologie (Vorlesung)            |                                | 3 SWS           |
| Prüfung: Klausur (90 Minuten)                      |                                |                 |
| Prüfungsanforderungen:                             |                                |                 |
| Abiotische Umweltbedingungen; Biotische Interaktio |                                |                 |
| des Faktors "Ressource"; Ökologische Nische; Pop   |                                |                 |
| von Populationen, Wechselwirkungen von Population  |                                |                 |
| Herbivorie; Mutualismus, Symbiose; Ökosysteme, S   |                                |                 |
| Nahrungsnetze; Definition eines individuums, Gene  |                                |                 |
| Fallstudie "Global Change"                         |                                |                 |
| Zugangsvoraussetzungen:                            |                                |                 |
| Für BSc Bio: mindestens 40 C aus dem ersten        |                                |                 |
| Studienabschnitt                                   |                                |                 |
| Für 2-F-BA: mindestens 22 C aus den                |                                |                 |
| Orientierungsmodulen                               |                                |                 |
| Sprache:                                           | Modulverantwortliche[r]:       |                 |
| Deutsch                                            | Prof. Dr. Stefan Scheu         |                 |
| Angebotshäufigkeit:                                | Dauer:                         |                 |
| Jedes Wintersemester                               | 1 Semester                     |                 |
| Wiederholbarkeit:                                  | Empfohlenes Fachsemester:      |                 |
| zweimalig                                          | 5                              |                 |
| Maximale Studierendenzahl:                         |                                |                 |

15

## Georg-August-Universität Göttingen Modul B.Bio-NF.127: Evolution und Systematik der Pflanzen 6 C 4 SWS

# Lernziele/Kompetenzen: Die Studierenden erwerben grundlegende Kenntnisse zur Evolution, Systematik und Ökologie der Landpflanzen (Lebermoose, Laubmoose, Hornmoose, Bärlappgewächse, Farne, Gymnospermen, Angiospermen). Sie lernen das Methodenspektrum zur Rekonstruktion der Landpflanzenevolution in Zeit und Raum kennen sowie die Methoden zur systematischen Gliederung und Benennung. Zielgruppe: BSc Biologie (Professionalisierung); 2-F BA (Wahlpflicht im Block A); als Nebenfach für Studierende anderer Fakultäten

| Lehrveranstaltung: Evolution und Systematik der Pflanzen (Vorlesung)               | 4 SWS |
|------------------------------------------------------------------------------------|-------|
| Prüfung: Klausur (60 Minuten)                                                      |       |
| Prüfungsanforderungen:                                                             |       |
| Im Rahmen einer Klausur sollen die Studierenden Aussagen zur Evolution             |       |
| und Systematik der Landpflanzen sowie zum Methodenspektrum der                     |       |
| Evolutionsrekonstruktion auf ihren Wahrheitsgehalt überprüfen können und Fragen zu |       |
| diesen Themenbereichen beantworten. In ähnlichem Umfang werden Grundkenntnisse     |       |
| zu Taxonomie und Nomenklatur abgefragt.                                            |       |

| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen | Empfohlene Vorkenntnisse: Biologische Grundkenntnisse, insbesondere der Pflanzensystematik |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Sprache: Deutsch                                                                                                                              | Modulverantwortliche[r]: PD Dr. Jochen Heinrichs                                           |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                      | Dauer: 1 Semester                                                                          |
| Wiederholbarkeit:<br>zweimalig                                                                                                                | Empfohlenes Fachsemester:                                                                  |
| Maximale Studierendenzahl: 15                                                                                                                 |                                                                                            |

|                                                         |                                   | ,              |  |
|---------------------------------------------------------|-----------------------------------|----------------|--|
| Georg-August-Universität Göttingen                      | 6 C<br>5 SWS                      |                |  |
| Modul B.Bio-NF.128: Evolution und Syste                 | 5 3 4 4 5                         |                |  |
| Lernziele/Kompetenzen:                                  | Arbeitsaufwand:                   |                |  |
| Nach der Absolvierung des Moduls sollen Studierende     | e in der Lage sein, Grundbegriffe | Präsenzzeit:   |  |
| und Denkweisen der ökologischen, evolutionsbiologis     | •                                 | 70 Stunden     |  |
| Forschung nachzuvollziehen. Die Studierenden soller     |                                   | Selbststudium: |  |
| phylogenetische Beziehungen ausgewählter Gruppen        | der Tiere kennenlernen.           | 110 Stunden    |  |
| Lehrveranstaltung: Phylogenetisches System und          | 5 SWS                             |                |  |
| Prüfung: Klausur (60 Minuten)                           |                                   |                |  |
| Prüfungsanforderungen:                                  |                                   |                |  |
| Phylogenie und Evolution der Tiere; Grundlagen der b    | •                                 |                |  |
| (morphologische und molekulare Methoden); Struktur      | , , <del>,</del>                  |                |  |
| Beziehungen ausgewählter Gruppen der Tiere; Kennt       | •                                 |                |  |
| Biologie der Tiertaxa; Fertigkeiten in der systematisch |                                   |                |  |
| insbesondere heimischer Lebensgemeinschaften            |                                   |                |  |
| Zugangsvoraussetzungen:                                 |                                   |                |  |
| Für BSc Bio: mindestens 40 C aus dem ersten             | Biologische Grundkenntnisse (inst | oesondere der  |  |
| Studienabschnitt                                        |                                   |                |  |
| Für 2-F-BA: mindestens 22 C aus den                     |                                   |                |  |
| Orientierungsmodulen                                    |                                   |                |  |
| Sprache:                                                | Modulverantwortliche[r]:          |                |  |
| Deutsch                                                 | Prof. Dr. Rainer Willmann         |                |  |
| Angebotshäufigkeit:                                     | Dauer:                            |                |  |
| Jedes Sommersemester                                    | 1 Semester                        |                |  |
| Wiederholbarkeit:                                       | Empfohlenes Fachsemester:         |                |  |
| zweimalig                                               | alig 6                            |                |  |
| Maximale Studierendenzahl:                              |                                   |                |  |

15

# Georg-August-Universität Göttingen Modul B.Che.1002: Mathematik für Chemiker I English title: Mathematics for Chemistry Students I

#### Lernziele/Kompetenzen:

Nach erfolgreicher Absolvierung des Moduls sollte die bzw. der Studierende

- kombinatorische Simulationen im Urnen- und Fächermodell beschreiben und die entsprechenden Formeln in Anwendungsproblemen einsetzen können;
- mit komplexen Zahlen operieren k\u00f6nnen und insbesondere die Exponentialdarstellung und die Eulersche Formel kennen;
- affine Räume im IR3 beherrschen (Geraden, Ebenen, Abstände, Winkel), Skalarund Vektorprodukte sowie Determinanten ausrechnen und diese Hilfsmittel bei der Bestimmung von Molekülparametern einsetzen können;
- Funktionen einer oder mehrerer Variablen differenzieren & integrieren können;
- lokale Eigenschaften von Funktionen einer und mehrerer Veränderlichen durch Taylor-Entwicklung bestimmen können und die Begriffe der partiellen Ableitung und des vollständigen Differentials anwenden und nutzen können;
- Techniken der numerischen Analysis (numerische Integration, Fixpunktprobleme, Interpolation, Approximation) anwenden können;
- die Notwendigkeit von Koordinatentransformationen kennen, durchführen und komplizierte Herleitungen nachvollziehen können (Polar- und Kugelkoordinaten);
- Kenntnis haben von orthogonalen Polyomen und deren Eigenschaften sowie rudimentäre funktionalanalytische Zusammenhänge umreißen können;
- elementare Kenntnisse der Vektoranalysis besitzen und diesbezügliche Herleitungen in einschlägigen Lehrbüchern nachvollziehen können.

#### Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden

| Lehrveranstaltungen:                                                             |       |
|----------------------------------------------------------------------------------|-------|
| 1. Mathematik für Chemiker I (Vorlesung)                                         | 4 SWS |
| 2. Mathematik für Chemiker I (Übung)                                             | 2 SWS |
| Prüfung: Klausur (180 Minuten), unbenotet                                        |       |
| Prüfungsanforderungen:                                                           |       |
| Grundkenntnisse der Kombinatorik, komplexe Zahlen, Vektoren im dreidimensionalen |       |
| Raum, Differentiation und Integration von Funktionen einer und mehrerer          |       |
| Veränderlicher, Koordinatentransformationen, Reihenentwicklungen.                |       |

| Zugangsvoraussetzungen:    | Empfohlene Vorkenntnisse:                           |
|----------------------------|-----------------------------------------------------|
| keine                      | keine                                               |
| Sprache: Deutsch           | Modulverantwortliche[r]: Prof. Dr. Peter Botschwina |
| Angebotshäufigkeit:        | Dauer:                                              |
| Jedes Wintersemester       | 1 Semester                                          |
| Wiederholbarkeit:          | Empfohlenes Fachsemester:                           |
| dreimalig                  | 1                                                   |
| Maximale Studierendenzahl: |                                                     |

| 150                                                        |  |
|------------------------------------------------------------|--|
| Bemerkungen: Wiederholbarkeit für BSc Biochemie: zweimalig |  |

# Georg-August-Universität Göttingen Modul B.Che.1003: Mathematik für Chemiker II English title: Mathematics for Chemistry Students II

#### Lernziele/Kompetenzen:

Nach erfolgreicher Absolvierung des Moduls sollte die bzw. der Studierende

- die Grundrechenarten mit Matrizen beherrschen und die Eigenschaften verschiedener Matrixtypen (transponierte, adjungierte, hermitesche, orthogonale und unitäre Matrizen) kennen
- wesentliche Eigenschaften von Determinanten beliebiger Ordnung und den Laplaceschen Entwicklungssatz anwenden können
- lineare Gleichungssysteme mit verschiedenen Methoden (Cramersche Regel, Gaußscher Algorithmus) lösen können
- ein Verständnis d. Eigenschaften des n-dimensionalen reellen und komplexen Vektorraums besitzen & die Diagonalisierung hermitescher Matrizen beherrschen
- quadrat. Formen analysieren & Hauptachsentransformationen durchführen können
- Elemente der Gruppentheorie und Eigenschaften einfacher Punktgruppen kennen
- lineare Differentialgleichungen 1. Ordnung und höherer Ordnung mit konstanten Koeffizienten in vielfältigen Anwendungen sicher lösen können
- Grundeigenschaften der Differentialgleichungen höherer Ordnung und den Potenzreihenansatz anwenden können und Systeme von linearen Differentialgleichungen 1. Ordnung mit Hilfe eines Vektoransatzes lösen können
- einfache Randwert- und Eigenwertprobleme (insbesondere Teilchen im Kasten) erfolgreich bearbeiten können

#### Arbeitsaufwand:

Präsenzzeit:
42 Stunden
Selbststudium: 78
Stunden

| Lehrveranstaltungen:                                                              |       |
|-----------------------------------------------------------------------------------|-------|
| 1. Mathematik für Chemiker II (Vorlesung)                                         | 2 SWS |
| 2. Mathematik für Chemiker II (Übung)                                             | 1 SWS |
| Prüfung: Klausur (180 Minuten)                                                    |       |
| Prüfungsanforderungen:                                                            |       |
| Matrizen & Determinanten, lineare Gleichungssysteme, lineare Transformationen,    |       |
| Kenntnisse der Gruppentheorie, Differentialgleichungen 1. und 2. Ordnung, Potenz- |       |
| reihenansatz, Systeme linearer Differentialgleichungen, Rand- & Eigenwertprobleme |       |

| Zugangsvoraussetzungen: keine            | Empfohlene Vorkenntnisse: B.Che.1002                |
|------------------------------------------|-----------------------------------------------------|
| Sprache: Deutsch                         | Modulverantwortliche[r]: Prof. Dr. Peter Botschwina |
| Angebotshäufigkeit: Jedes Sommersemester | Dauer: 1 Semester                                   |
| Wiederholbarkeit:<br>dreimalig           | Empfohlenes Fachsemester: 2                         |
| Maximale Studierendenzahl: 130           |                                                     |

| _ | _ |   | <br>٠k١ | <br>- | _ | - | _ |
|---|---|---|---------|-------|---|---|---|
| В | ρ | m | K       | m     | Ф | n | - |
|   |   |   |         |       |   |   |   |

# Georg-August-Universität Göttingen Modul B.Che.1004: Strukturaufklärungsmethoden in der Chemie English title: Structure Elucidation Methods in Chemistry

#### Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Abschluß des Moduls können die Studierenden Präsenzzeit: 98 Stunden • die physikochemischen Grundlagen der NMR- Spektroskopie (inklusive Selbststudium: Heterokern-NMR-Spektroskopie) und der Massen-spektrometrie beherrschen und 142 Stunden diese Methoden zur Strukturaufklärung einsetzen • die Ergebnisse der UV/Vis-Spektroskopie an Übergangsmetallkomplexen aus den Eigenschaften der zugrundeliegenden Ein- bzw. Mehrelektronenterme herleiten • mit den grundlegenden magnetischen Kenngrößen und Messmethoden umgehen und magnetische Messungen für paramagne-tische Stoffe auswerten und interpretieren • die Grundlagen der Röntgenstrukturbestimmung verstehen, einschließlich Symmetrie im reellen und reziproken Raum, das Phasenproblem,

| Lehrveranstaltung: B.Che.1004-1 Methoden der Chemie I (Übung, Vorlesung)        | 3 SWS |
|---------------------------------------------------------------------------------|-------|
| Prüfung: Klausur (120 Minuten)                                                  | 4 C   |
| Prüfungsanforderungen:                                                          |       |
| Theoretische Grundlagen der NMR-Spektroskopie, Meßtechniken, Unterschiede       |       |
| 1H/13C-Messungen, Vorhersage und Analyse von Shifts und Kopplungsmustern;       |       |
| Kenntnis der wichtigsten 2D-Techniken. Massenspektrometrie: Aufbau und Funktion |       |
| von Sektorfeldgeräten, TOF-Spektrometer, Quadrupol, FTICR-Geräte; wichtige      |       |
| Ionisationstechniken (EI, ESI, CI, MALDI, FD); Fragmentierungsreaktionen.       |       |
| Strukturaufklärung einfacher Verbindungen aus NMR- und MS-Daten; weitere        |       |
| Anwendungsgebiete der Techniken.                                                |       |

Kristallstrukturverfeinerung und die Interpretation der Ergebnisse

| Lehrveranstaltung: B.Che.1004-2 Methoden der Chemie II (Übung, Vorlesung)       | 4 SWS |
|---------------------------------------------------------------------------------|-------|
| Prüfung: Klausur (120 Minuten)                                                  | 4 C   |
| Prüfungsvorleistungen:                                                          |       |
| 50% der max. möglichen Punkte aus der aktiven Teilnahme an den Übungen          |       |
| Prüfungsanforderungen:                                                          |       |
| Heterokern-NMR-Spektroskopie; Grundzüge der UV/vis- und ESRSpektroskopie mit    |       |
| Interpretation einfacher Spektren; grundlegende magnetische Kenngrößen und ihre |       |
| Interpretation                                                                  |       |

| Zugangsvoraussetzungen: | Empfohlene Vorkenntnisse:                                                 |
|-------------------------|---------------------------------------------------------------------------|
| keine                   | B.Che.1001, B.Che.1101, B.Che.1201, B.Che.1301, B.Che.1303 und B.Che.1401 |
| Sprache:                | Modulverantwortliche[r]:                                                  |
| Deutsch                 | Prof. Dr. Hartmut Laatsch                                                 |
| Angebotshäufigkeit:     | Dauer:                                                                    |
|                         | 2 Semester                                                                |

| B.Che.1004-1 jedes WiSe, B.Che.1004-2 jedes<br>SoSe        |                                 |
|------------------------------------------------------------|---------------------------------|
| Wiederholbarkeit: dreimalig                                | Empfohlenes Fachsemester: 3 - 4 |
| Maximale Studierendenzahl:<br>90                           |                                 |
| Bemerkungen: Wiederholbarkeit für BSc Biochemie: zweimalig |                                 |

## Georg-August-Universität Göttingen Modul B.Che.1401: Atombau und chemische Bindung 5 C 4 SWS

#### Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreicher Absolvierung des Moduls sollte der Studierende Präsenzzeit: 56 Stunden • die Postulate der Wellenmechanik anwenden können und wichtige daraus Selbststudium: 94 abgeleitete Sätze beherrschen Stunden • mit den analytischen Lösungen der zeitunabhängigen Schrödinger-gleichung für einfache Systeme (Teilchen im ein- und mehrdimensionalen Kasten, Teilchen auf einer Kugeloberfläche, Einelektronenatom) operieren können • Hamiltonoperatoren für atomare und molekulare Systeme angeben und analysieren können • die Bedeutung des Elektronenspins verstehen und seine mathematische Beschreibung durchführen können • das verallgemeinerte Pauli-Prinzip und seine Konseguenzen für die Wellenfunktion eines Mehrelektronensystems (Slater-Determinante) kennen • die Elektronenstruktur eines Atoms in der Orbitalnäherung beschreiben können • den qualitativen Umgang mit Molekülorbitalen beherrschen, insbesondere auch hinsichtlich ihrer Symmetrie • Näherungsverfahren zur Beschreibung des molekularen Zwei-elektronenproblems anwenden können • Elektronendichten für einfache Systeme berechnen können

| Lehrveranstaltungen:                                                     |       |
|--------------------------------------------------------------------------|-------|
| 1. Atombau und chemische Bindung (Vorlesung)                             | 2 SWS |
| 2. Atombau und chemische Bindung (Übung)                                 | 2 SWS |
| Prüfung: Klausur (180 Minuten)                                           |       |
| Prüfungsanforderungen:                                                   |       |
| Grundlagen und einfache Modelle der Wellenmechanik, Bahndrehimpuls und   |       |
| Spin, Variations- und Störungsrechnung, Elektronenstruktur von Atomen,   |       |
| Molekülorbitaltheorie mit Anwendung auf kleine Moleküle, Hybridisierung. |       |

| Zugangsvoraussetzungen: B.Che.1902 und B.Che.1903 | Empfohlene Vorkenntnisse:<br>B.Che.1002, B.Che.1003 |
|---------------------------------------------------|-----------------------------------------------------|
| Sprache: Deutsch                                  | Modulverantwortliche[r]: Alle                       |
| Angebotshäufigkeit: Jedes Wintersemester          | Dauer: 1 Semester                                   |
| Wiederholbarkeit:<br>dreimalig                    | Empfohlenes Fachsemester:                           |
| Maximale Studierendenzahl: 120                    |                                                     |

· das Konzept der Hybridisierung anwenden können

| _ | _ |   | <br>٠k١ | <br>- | _ | - | _ |
|---|---|---|---------|-------|---|---|---|
| В | ρ | m | K       | m     | Ф | n | - |
|   |   |   |         |       |   |   |   |

# Georg-August-Universität Göttingen Modul B.Che.2901: Wissenschaftskommunikation English title: Science Communication 4 C (Anteil SK: 2 C) 3 SWS

#### Lernziele/Kompetenzen: Arbeitsaufwand: Absolvent/innen dieses Moduls Präsenzzeit: 42 Stunden • kennen die wichtigsten Methoden & Instrumente der Wissenschaftskommunikation Selbststudium: 78 • können unterscheiden zwischen journalistischer Wissenschaftskommunikation, Stunden Public Relations für Wissenschaft sowie dem wissenschaftlichen Verlagswesen • können für die Öffentlichkeit relevante Themen identifizieren und die notwendigen Informationen hierzu recherchieren und die kommunikative Umsetzung zu planen • haben die Fähigkeit, zu einem populärwissenschaftlichen Thema ein Exposé zu schreiben und den Themenvorschlag zu verteidigen • können Wissenschaftssprache in eine für die Öffentlichkeit verständliche Sprache umformulieren können ein populärwissenschaftliches Thema in verschiedenen Textformen strukturiert und unter Berücksichtigung seiner unterschiedlichen Aspekte darstellen

| Lehrveranstaltung: Wissenschaftskommunikation (Seminar)                               | 3 SWS |
|---------------------------------------------------------------------------------------|-------|
| mit praktischen Übungen                                                               |       |
| Angebotshäufigkeit: i. d. R. als Blockkurs im WiSe                                    |       |
| Prüfung: Essay (max. 10 Seiten)                                                       |       |
| Prüfungsvorleistungen:                                                                |       |
| Exposé für ein populärwissenschaftliches Buch (2-3 Seiten) und Mini-Reportage (5-10   |       |
| Seiten)                                                                               |       |
| Prüfungsanforderungen:                                                                |       |
| Vorgegebene wissenschaftliche Fragestellungen und Inhalte für Laien in wesentlichen   |       |
| Punkten charakterisieren, strukturiert darstellen und konzise bewerten. Die           |       |
| Prüfungsleistung wird getrennt nach fachlichen und darstellerischen Aspekten bewertet |       |

| Zugangsvoraussetzungen:    | Empfohlene Vorkenntnisse: |
|----------------------------|---------------------------|
| keine                      | keine                     |
| Sprache:                   | Modulverantwortliche[r]:  |
| Deutsch                    | Prof. Dr. Jörg Schroeder  |
|                            | Isabel Trzeciok M.A.      |
| Angebotshäufigkeit:        | Dauer:                    |
| Jedes Wintersemester       | 1 Semester                |
| Wiederholbarkeit:          | Empfohlenes Fachsemester: |
| dreimalig                  | 5                         |
| Maximale Studierendenzahl: |                           |
| 15                         |                           |

#### Bemerkungen:

### Georg-August-Universität Göttingen 6 C (Anteil SK: 3

| Modul B.Che.3902: Industriepraktikum  English title: Practical in Chemical or Pharmaceutical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (C)                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Lernziele/Kompetenzen: Die Studierenden  • haben bei einem der Partnerunternehmen der Fartnerunternehmen der Fart | Arbeitsaufwand:<br>Präsenzzeit:<br>160 Stunden<br>Selbststudium: 20<br>Stunden |
| Lehrveranstaltung: Praktikum in der chemischen I<br>mindestens 4 Wochen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |
| Prüfung: schriftlicher Praktikums- und Erfahrungs unbenotet Prüfungsanforderungen: Praktische Tätigkeiten zusammenfassend protokollier strukturiert darstellen und im Rahmen der eigenen Au aktuelle Forschungs- und Entwicklungsgebiete der ch Tätigkeitsfeldern für angehende Industriechemiker im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |
| Zugangsvoraussetzungen: individuelle Zugangsvoraussetzungen abhängig von den Anforderungen des Unternehmens für den Praktikumsplatz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |

| Zugangsvoraussetzungen: individuelle Zugangsvoraussetzungen abhängig von den Anforderungen des Unternehmens für den Praktikumsplatz | Empfohlene Vorkenntnisse:<br>keine                |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Sprache: Deutsch                                                                                                                    | Modulverantwortliche[r]: Prof. Dr. Jörg Schroeder |
| Angebotshäufigkeit: Jedes Semester; in Abstimmung mit den Partnerunternehmen der Chemischen Industrie                               | Dauer: 1 Semester                                 |
| Wiederholbarkeit:<br>zweimalig                                                                                                      | Empfohlenes Fachsemester:<br>4 - 6                |
| Maximale Studierendenzahl: 15                                                                                                       |                                                   |

| Georg-August-Universität Göttingen Modul B.Che.3903: Umweltchemie English title: Environmental Chemistry                                                                                                                                                    | 3 C<br>2 SWS                                                      |       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|--|--|
| Lernziele/Kompetenzen: Die Studierenden erlernen die chemische Grundla Themen Treibhausgase, Ozonproblematik, natürl Schadstoffe in der Luft, im Wasser und im Boden Treibstoffe.                                                                           | Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden |       |  |  |
| Lehrveranstaltung: Umweltchemie (Übung, Vo                                                                                                                                                                                                                  | rlesung)                                                          | 2 SWS |  |  |
| Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: 50% der max. möglichen Punkte aus der aktiven Prüfungsanforderungen: Die Chemie, die sich in unserer Umwelt abspielt, Reaktionsgleichungen, Struktur und Bindung, und Konzepten interpretiert werden. |                                                                   |       |  |  |
| Zugangsvoraussetzungen: keine                                                                                                                                                                                                                               | Empfohlene Vorkenntnisse:<br>B.Che.1001                           |       |  |  |
| Sprache: Deutsch                                                                                                                                                                                                                                            | Modulverantwortliche[r]: Prof. George M. Sheldrick                |       |  |  |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                                                                                                                                    |                                                                   |       |  |  |
| Wiederholbarkeit:<br>dreimalig                                                                                                                                                                                                                              | Empfohlenes Fachsemester: 4 - 6                                   |       |  |  |
| Maximale Studierendenzahl: 120                                                                                                                                                                                                                              |                                                                   |       |  |  |
| Bemerkungen:                                                                                                                                                                                                                                                |                                                                   |       |  |  |

#### Georg-August-Universität Göttingen 6 C 8 SWS Modul B.Che.3904: Grundlagen der Radiochemie English title: Basics in Radiochemistry Lernziele/Kompetenzen: Arbeitsaufwand: Nach erfolgreichem Abschluss des Moduls kann der/die Studierende Präsenzzeit: 112 Stunden den Aufbau und die Mechanismen der Stabilität bzw. den Zerfall von Kernen. Selbststudium: 68 Stunden • Gesetzmäßigkeiten der Zerfallscharakteristiken mathematisch berechnen • die Wechselwirkung verschiedener Strahlenarten mit Materie nachvollziehen • die radiochemischen Gewinnung von Nukliden und die Technik von Markierungen verstehen eine Nutzung von Radionukliden in Forschung und Industrie (Altersbestimmung, Tracermethoden, Herstellung geeigneter Nuklide, Entsorgung, Strahlenchemie u.a.) beurteilen durch die im Praktikumsteil erworbenen Fähigkeiten den Umgang von radioaktiven Präparaten und die Anwendung moderner, hochempfindlicher Analyseverfahren beherrschen Lehrveranstaltungen: 1. Einführung in die Radiochemie (Vorlesung) 2 SWS 2. Anwendung radioaktiver Isotope (Praktikum) 6 SWS Prüfung: Klausur (180 Minuten) Prüfungsvorleistungen: 8 testierte Praktikumsprotokolle im Umfang von 3 bis 5 Seiten Prüfungsanforderungen: Teilmodul 1: Zerfallsarten und -gesetze, Wechselwirkung mit Materie, Isotopieeffekte, Energiebilanz, Isotopengewinnung, Markierungsarten, Strahlungsnachweis, Dosisbegriffe, Anwendung Teilmodul 2: Isotopenaustausch, Aktivierung, radioaktives Gleichgewicht, Nuklidgeneratoren, Retention, Wirkungsgrade, Kalibrierung von Messgeräten **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: ALT - B.Che.1002 Erfüllung der gesetzlichen Bestimmungen für Arbeiten im Kontrollbereich Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Götz Eckold Dauer: Angebotshäufigkeit: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig Maximale Studierendenzahl:

14

| _ | _ |   | _ |    | ۱  |    | าด |              |   | _ |
|---|---|---|---|----|----|----|----|--------------|---|---|
| - | 0 | m | 0 | rı |    |    | 70 | $\mathbf{a}$ | n |   |
| _ | c |   | ┖ |    | `` | 41 | ı  |              |   |   |

| Georg-August-Universität Göttingen                                                                                             | 4 C (Anteil SK: 4                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| Modul B.Che.3908: Tätigkeit in der stude<br>der Fakultät für Chemie<br>English title: Activity in students self-administration | (C)                                                                |  |
| Lernziele/Kompetenzen: Durchdringung und aktive Mitgestaltung der student Fakultät für Chemie                                  | Arbeitsaufwand: Präsenzzeit: 100 Stunden Selbststudium: 20 Stunden |  |
| Lehrveranstaltung: Mitgliedschaft im Fachschaf                                                                                 | tsrat                                                              |  |
| Prüfung: Tätigkeitsbericht (max. 2 Seiten), unbe                                                                               | notet                                                              |  |
| Zugangsvoraussetzungen: Nachweis der Mitgliedschaft in einem Organ der studentischen Selbstverwaltung                          | Empfohlene Vorkenntnisse:<br>keine                                 |  |
| Sprache: Deutsch                                                                                                               | Modulverantwortliche[r]: Prof. Dr. Jörg Schroeder                  |  |
| Angebotshäufigkeit: Jedes Semester                                                                                             | Dauer:<br>2 Semester                                               |  |
| Wiederholbarkeit:<br>dreimalig                                                                                                 | Empfohlenes Fachsemester:                                          |  |
| Maximale Studierendenzahl: nicht begrenzt                                                                                      |                                                                    |  |
| Bemerkungen:                                                                                                                   | ·                                                                  |  |

| Georg-August-Universität Göttingen                                                                                                                                          |                                                   | 4 C                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|
| Modul B.Che.3909: Tätigkeit in der akader an der Fakultät für Chemie English title: Activity in academic self-administration a                                              |                                                   |                                                                   |
| Lernziele/Kompetenzen: Durchdringung und aktive Mitgestaltung der akademis Fakultät für Chemie.                                                                             | schen Selbstverwaltung an der                     | Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 120 Stunden |
| Lehrveranstaltung: Tätigkeit in der akademischen Fakultät für Chemie  1. Mitgliedschaft im Fakultätsrat <i>oder</i>                                                         | Selbstverwaltung an der                           |                                                                   |
| Mitgliedschaft im Fakultatsrat <i>oder</i> Mitgliedschaft in der Studienkommission <i>oder</i> Mitgliedschaft in der Finanzkommission <i>oder</i>                           |                                                   |                                                                   |
| Mitgliedschaft in einer Berufungskommission                                                                                                                                 |                                                   |                                                                   |
| Prüfung: Tätigkeitsbericht (max. 2 Seiten), unbenotet                                                                                                                       |                                                   |                                                                   |
| Zugangsvoraussetzungen: Nachweis der Mitgliedschaft im Fakultätsrat, der Studienkommission oder der Finanzkommission oder einer Berufungskommission der Fakultät für Chemie | Empfohlene Vorkenntnisse:<br>keine                |                                                                   |
| Sprache: Deutsch                                                                                                                                                            | Modulverantwortliche[r]: Prof. Dr. Jörg Schroeder |                                                                   |
| Angebotshäufigkeit: Jedes Semester                                                                                                                                          | Dauer:<br>2 Semester                              |                                                                   |
| Wiederholbarkeit:<br>dreimalig                                                                                                                                              | Empfohlenes Fachsemester:                         |                                                                   |
| Maximale Studierendenzahl: nicht begrenzt                                                                                                                                   |                                                   |                                                                   |
| Bemerkungen:                                                                                                                                                                |                                                   |                                                                   |

| Georg-August-Universität Göttingen                                                                                                                                                                                        |                                                    | 3 C                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|
| Modul B.Phy.706: Experimentalphysik II für Nebenfach  English title: Experimental Physics II for non-physics students                                                                                                     |                                                    | 3 SWS                                                     |
| Lernziele/Kompetenzen: Lernziele: Kenntnisse und Verständnis der Grundlag Wärmelehre                                                                                                                                      | ·                                                  | Arbeitsaufwand: Präsenzzeit: 42 Stunden Selbststudium: 48 |
| Kompetenzen: Die Studierenden sollen in die Lage versetzt werden, grundlegende Konzepte und Zusammenhänge in den oben angegebenen Gebieten zu verstehen und wiederzugeben sowie einfache physikalische Aufgaben zu lösen. |                                                    | Stunden                                                   |
| Lehrveranstaltungen:                                                                                                                                                                                                      |                                                    |                                                           |
| 1. Experimentalphysik II (Vorlesung)                                                                                                                                                                                      |                                                    | 2 SWS                                                     |
| 2. Experimentalphysik II (Übung)                                                                                                                                                                                          |                                                    | 1 SWS                                                     |
| Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: Erfolgreiche Bearbeitung von mindestens 50% der Hausaufgaben in den Übungen                                                                                         |                                                    |                                                           |
| Prüfungsanforderungen: Grundlagen in den Gebieten Optik und Wärmelehre                                                                                                                                                    |                                                    |                                                           |
| Zugangsvoraussetzungen:<br>keine                                                                                                                                                                                          | Empfohlene Vorkenntnisse:<br>keine                 |                                                           |
| Sprache: Deutsch                                                                                                                                                                                                          | Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner |                                                           |
| Angebotshäufigkeit: Jedes Sommersemester                                                                                                                                                                                  | Dauer:<br>1 Semester                               |                                                           |
| Wiederholbarkeit: dreimalig                                                                                                                                                                                               | Empfohlenes Fachsemester:                          |                                                           |
| Maximale Studierendenzahl: 300                                                                                                                                                                                            |                                                    |                                                           |

zweimalig

300

Maximale Studierendenzahl:

#### 6 C Georg-August-Universität Göttingen 6 SWS Modul B.Phy-NF.715-1: Experimentalphysik I für Chemiker, Biochemiker, Geologen und Molekularmediziner English title: Experimental Physics for Chemistry, Biochemisty, Geology and Molecular Medicine students Lernziele/Kompetenzen: Arbeitsaufwand: Präsenzzeit: Lernziele: Kenntnisse und Verständnis der Grundlagen in den Gebieten Mechanik, Schwingungen und Wellen, Elektrizitätslehre 84 Stunden Selbststudium: 96 Kompetenzen: Die Studierenden sollen in die Lage versetzt werden, grundlegende Stunden Konzepte und Zusammenhänge in den oben angegebenen Gebieten zu verstehen und wiederzugeben sowie einfache physikalische Aufgaben zu lösen. Lehrveranstaltungen: 1. Experimentalphysik I für Chemiker, Biochemiker, Geologen und 4 SWS Molekularmediziner (Vorlesung) 2. Experimentalphysik I für Chemiker, Biochemiker, Geologen und 2 SWS Molekularmediziner (Übung) Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: Erfolgreiche Bearbeitung von mindestens 50% der Hausaufgaben in den Übungen Prüfungsanforderungen: Grundlagen in den Gebieten Mechanik, Schwingungen und Wellen, Elektrizitätslehre **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner Angebotshäufigkeit: Dauer: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:**

| Georg-August-Universität Göttingen                                                                                                                                                                                                                       |                                                              | 4 C<br>3 SWS                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|
| Modul SK.Bio.114-1: Linux und Perl für                                                                                                                                                                                                                   | Biologen                                                     |                                                                   |
| Lernziele/Kompetenzen: Nach erfolgreichem Absolvieren des Moduls besitzen die Studierenden grundlegende Kenntnisse des Betriebssystems LINUX bzw. UNIX sowie grundlegende Programmierkenntnisse in PERL oder vergleichbaren Sprachen.                    |                                                              | Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 64 Stunden |
| Lehrveranstaltung: Linux und Perl für Biologen                                                                                                                                                                                                           | (Praktikum)                                                  | 3 SWS                                                             |
| Prüfung: Klausur (120 Minuten) Prüfungsanforderungen: Selbständiges Arbeiten mit dem Kommandozeileni Linux; Erstellung kleiner Programme in der Program Daten aus Dateien, anlegen geeigneter Datenstruk Ausdrücken Implementierung einfacher Algorithme | mmiersprache Perl (Einlesen von sturen, Umgang mit Regulären |                                                                   |
| Zugangsvoraussetzungen: Für BSc Bio: mindestens 40 C aus dem ersten Studienabschnitt                                                                                                                                                                     | Empfohlene Vorkenntnisse:<br>B.Bio.113                       |                                                                   |
| Für 2-F-BA: mindestens 22 C aus den Orientierungsmodulen                                                                                                                                                                                                 |                                                              |                                                                   |
| Sprache: Deutsch                                                                                                                                                                                                                                         | Modulverantwortliche[r]: Prof. Dr. Burkhard Morgenstern      |                                                                   |
| Angebotshäufigkeit: Jedes Semester; in vorlesungsfreier Zeit                                                                                                                                                                                             | Dauer:<br>1 Semester                                         |                                                                   |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                                                                                           | Empfohlenes Fachsemester: 5 - 6                              |                                                                   |
| Maximale Studierendenzahl:                                                                                                                                                                                                                               |                                                              |                                                                   |

10

| Georg-August-Universität Göttingen                                                    | 3 C               |
|---------------------------------------------------------------------------------------|-------------------|
| Modul SK.Bio.305: Grundlagen der Biostatistik mit R                                   | 2 SWS             |
| Lernziele/Kompetenzen:                                                                | Arbeitsaufwand:   |
| Nach erfolgreichem Absolvieren des Moduls haben die Studierenden den Umgang           | Präsenzzeit:      |
| mit der freien Statistik-Sprache R und die Anwendung der Sprache auf biologische      | 30 Stunden        |
| Datensätze erlernt. Sie können die statistischen Verfahren wie deskriptive Statistik, | Selbststudium: 60 |
| parametrische und nicht parametrische Zweistichprobentests, Chi-Quadrat Test,         | Stunden           |
| Korrelationsanalyse, lineare Regressionsanalyse und ANOVA anwenden.                   |                   |
| Lehrveranstaltung: Einführung in die Biostatistik mit R (Seminar)                     | 2 SWS             |
| Prüfung: Klausur, beinhaltet praktische Teile am Rechner (60 Minuten)                 |                   |
| Prüfungsvorleistungen:                                                                |                   |
| regelmäßige Kursteilnahme und Abgabe der Lösungen zu den Übungszetteln                |                   |
| Prüfungsanforderungen:                                                                |                   |
| Eigenständige Analyse biologischer Datensätze mit Hilfe der Sprache R; Beurteilung    |                   |
| und praktische Anwendung grundlegender Testverfahren der Statistik                    |                   |

| Zugangsvoraussetzungen: B.Bio.302-1 | Empfohlene Vorkenntnisse:  Mathematische und statistische Grundkenntnisse |
|-------------------------------------|---------------------------------------------------------------------------|
| Sprache: Deutsch                    | Modulverantwortliche[r]: Prof. Dr. Burkhard Morgenstern                   |
| Angebotshäufigkeit: Jedes Semester  | Dauer:<br>1 Semester                                                      |
| Wiederholbarkeit:<br>zweimalig      | Empfohlenes Fachsemester:<br>5 - 6                                        |
| Maximale Studierendenzahl: 30       |                                                                           |

| Georg-August-Universität Göttingen                                               | 3 C               |
|----------------------------------------------------------------------------------|-------------------|
| Modul SK.Bio.310: Algen- und Gewässerökologie                                    | 2 SWS             |
| Lernziele/Kompetenzen:                                                           | Arbeitsaufwand:   |
| Nach erfolgreichem Absolvieren des Moduls besitzen die Studierenden Kenntnis der | Präsenzzeit:      |
| Diversität von Algen und Cyanobakterien in unterschiedlichen Gewässertypen und   | 30 Stunden        |
| ihre Veränderung in Bezug auf verschiedene Umweltfaktoren. Sie sind in der Lage  | Selbststudium: 60 |
| Algengruppen aus Gewässerproben zu identifizieren und den Gewässerzustand        | Stunden           |
| einzuordnen.                                                                     |                   |
| Lehrveranstaltungen:                                                             |                   |
| 1. Seminar (1 Kurstag)                                                           |                   |
| 2. Algenkurs (4 Kurstage)                                                        |                   |
| 3. Exkursion                                                                     |                   |
| Prüfung: Referat (ca. 15 Minuten)                                                |                   |
| Prüfungsanforderungen:                                                           |                   |
| Fachinhalt der Seminarvorträge, insbesondere in Bezug auf Verständnis der        |                   |
| Diversität von Algen und deren Veränderung in unterschiedlichen Gewässertypen;   |                   |
| Fachvortrag (Sprache und Verständlichkeit der Präsentation, Herstellung eines    |                   |
| Bezugs des spezifischen fachlichen Inhalts zu fachübergreifenden Fragestellungen |                   |
| wie z.B. Morphologie und Phylogenie der Algen, Differenzierung unterschiedlicher |                   |

| Zugangsvoraussetzungen: keine            | Empfohlene Vorkenntnisse: Biologische Grundkenntnisse, B.Bio.127 |
|------------------------------------------|------------------------------------------------------------------|
| Sprache: Deutsch                         | Modulverantwortliche[r]: Prof. Dr. Thomas Friedl                 |
| Angebotshäufigkeit: Jedes Sommersemester | Dauer: 1 Semester                                                |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester:                                        |
| Maximale Studierendenzahl:<br>20         |                                                                  |

Gewässertypen, Diskussion)

## Georg-August-Universität Göttingen Modul SK.Bio.315: Bioethik 3 C 2 SWS

| Lernziele/Kompetenzen:                                                                                                                                                                                                                    | Arbeitsaufwand:   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1. Anhand ausgewählter Themen der Bioethik (z. B. Tierethik, Umweltethik,                                                                                                                                                                 | Präsenzzeit:      |
| Medizinethik, Gen-Ethik) sollen die Studierenden einen Einblick bekommen in die                                                                                                                                                           | 28 Stunden        |
| moralischen Probleme, die sich aus der Anwendung der in ihrem Studium vermittelten                                                                                                                                                        | Selbststudium: 62 |
| naturwissenschaftlichen Kenntnisse und Techniken ergeben.                                                                                                                                                                                 | Stunden           |
| 2. Anhand einer allgemeinen Einführung in die Ethik, in moralisches Argumentieren und in die Methoden der Angewandten Ethik sollen die Studierenden lernen, wie man über diese moralischen Probleme auf rationale Weise diskutieren kann. |                   |

| Lehrveranstaltung: Bioethik (Vorlesung)                                             | 2 SWS |
|-------------------------------------------------------------------------------------|-------|
| Prüfung: Kurzessay (max. 7 Seiten)                                                  |       |
| Prüfungsanforderungen:                                                              |       |
| Eigenständige Auseinandersetzung mit einer bioethischen Fragestellung in Form eines | ;     |
| Kurzessays.                                                                         |       |

| Zugangsvoraussetzungen: keine            | Empfohlene Vorkenntnisse:<br>keine                  |
|------------------------------------------|-----------------------------------------------------|
| Sprache: Deutsch                         | Modulverantwortliche[r]: Prof. Dr. Holmer Steinfath |
| Angebotshäufigkeit: Jedes Wintersemester | Dauer: 1 Semester                                   |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester: 5                         |
| Maximale Studierendenzahl:               |                                                     |

| Coorg / tagaot Cintorollat Cottingon       | 3 C   |
|--------------------------------------------|-------|
| Modul SK.Bio.316: Philosophie der Biologie | 2 SWS |

| Lernziele/Kompetenzen:                                                                    | Arbeitsaufwand:   |
|-------------------------------------------------------------------------------------------|-------------------|
| 1. Anhand ausgewählter Themen zur Philosophie der Biologie, speziell der                  | Präsenzzeit:      |
| synthetischen Evolutionstheorie, sollen die Studierenden einen Einblick in die logischen, | 28 Stunden        |
| begrifflichen und erkenntnistheoretischen Probleme der modernen Biologie bekommen,        | Selbststudium: 62 |
| so wie sie sich aus ihrem Studium ergeben.                                                | Stunden           |
| 2. Anhand historischer und systematischer Texte sollen die Studierenden einen Einblick    |                   |
| in die Wissenschaftstheorie und Geschichte der Biologie bekommen, die sie in die Lage     |                   |
| versetzen, die heutigen Fragen und Probleme ihres Faches genauer zu verstehen und         |                   |
| die Grundlagen der genetischen Populationstheorie reflektieren zu können.                 |                   |

| Lehrveranstaltung: Hauptseminar                                                     | 2 SWS |
|-------------------------------------------------------------------------------------|-------|
| Prüfung: Essay (max. 7 Seiten)                                                      |       |
| Prüfungsanforderungen:                                                              |       |
| Eigenständige Auseinandersetzung mit begrifflichen Problemen der Biologie, speziell |       |
| der Evolutionstheorie in Form eines Kurzessays.                                     |       |

| Zugangsvoraussetzungen: keine            | Empfohlene Vorkenntnisse:<br>keine                                           |
|------------------------------------------|------------------------------------------------------------------------------|
| Sprache: Deutsch, Englisch               | Modulverantwortliche[r]:  Prof. Dr. phil. nat. Dr. phil. habil. Ulrich Majer |
| Angebotshäufigkeit: Jedes Wintersemester | Dauer: 1 Semester                                                            |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester: 5                                                  |
| Maximale Studierendenzahl: 30            |                                                                              |

### Georg-August-Universität Göttingen4 C (Anteil SK: 4 C)<br/>3 SWS

#### Arbeitsaufwand: Lernziele/Kompetenzen: Präsenzzeit: Die Studenten erhalten einen Überblick über die wesentlichen Grundlagen der 42 Stunden Archäometrie. Arbeitsweisen aus dem anorganischen und organischen Zweig der Archäometrie, sowie zur Datierung werden aus folgenden Disziplinen vorgestellt: Selbststudium: 78 Stunden Anthropologie, Botanik, Physikalische Chemie und Geologie. Das Spektrum der Methoden umfasst die Dendrochronologie, Oberflächenanalysen menschlicher Überreste, Radiografie, Paläo-Enthnobotanische Analysen, Gaschromatografie und Massenspektrometrie, DNA-Analysen, Vegetationsgeschichte und Bodenanalysen. Einzelne Methoden werden im Praktikumsbetrieb erlernt und angewendet. Die Studenten lernen, neben den Einsatzmöglichkeiten verschiedener Methoden auch deren Einschränkungen und Grenzen beurteilen zu können.

| Lehrveranstaltung: Praktikum und Demonstrationskurs zur Archäometrie               | 3 SWS |
|------------------------------------------------------------------------------------|-------|
| Prüfung: Klausur (90 Minuten), unbenotet                                           |       |
| Prüfungsanforderungen:                                                             |       |
| Die Studierenden sollen in der Lage sein, die Prinzipien der im Rahmen der         |       |
| Lehrveranstaltung vorgestellten Methoden beschreiben können. Sie sollten           |       |
| grundsätzliche Aussagen über die zu untersuchenden Materialien treffen können aber |       |
| auch spezifische Beispiele aufführen können.                                       |       |

| Zugangsvoraussetzungen:<br>keine         | Empfohlene Vorkenntnisse: Biologische Grundkenntnisse  Der begleitende Besuch des umwelthistorischen Kolloquiums (14tägig) wird empfohlen. |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Sprache: Deutsch                         | Modulverantwortliche[r]: Dr. Birgit Großkopf                                                                                               |
| Angebotshäufigkeit: Jedes Sommersemester | Dauer: 1 Semester                                                                                                                          |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester:                                                                                                                  |
| Maximale Studierendenzahl: 12            |                                                                                                                                            |

| Georg-August-Universität Göttingen                                                                                                                                                                   |                                    | 12 C                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------|
| Modul SK.Bio.325: Unternehmenspraktikum                                                                                                                                                              |                                    |                                                         |
| Lernziele/Kompetenzen: Transfer der Inhalte des Bachelor-Studiums auf die praktische Anwendung in biologischen Tätigkeitsbereichen beispielsweise in einem Unternehmensumfeld oder in einer Behörde. |                                    | Arbeitsaufwand: Präsenzzeit: 240 Stunden Selbststudium: |
| Schlüsselkompetenzen: Bewerbung, Networking, Karrierewegsspezifische<br>Qualifikationen                                                                                                              |                                    | 120 Stunden                                             |
| Lehrveranstaltung: Unternehmenspraktikum  Angebotshäufigkeit: 6 Wochen Vollzeit                                                                                                                      |                                    |                                                         |
| Prüfung: Praktikumsbericht, unbenotet                                                                                                                                                                |                                    |                                                         |
| Prüfungsanforderungen: Regelmäßige Teilnahme am Praktikum (Bestätigung durch Unternehmen/ Arbeitsgruppenleiter)                                                                                      |                                    |                                                         |
| Zugangsvoraussetzungen: für BSc Bio: 1. Studienabschnitt; 3 von 8 Grundlagenmodule individuelle Zugangsvoraussetzungen abhängig                                                                      | Empfohlene Vorkenntnisse:<br>keine |                                                         |
| von den Anforderungen des Unternehmens für den<br>Praktikumsplatz                                                                                                                                    |                                    |                                                         |
| Sprache: Deutsch                                                                                                                                                                                     | Modulverantwortliche[r]: Alle      |                                                         |
| Angebotshäufigkeit: Jedes Semester                                                                                                                                                                   | Dauer:<br>1 Semester               |                                                         |
| Wiederholbarkeit:<br>zweimalig                                                                                                                                                                       | Empfohlenes Fachsemester: 3 - 6    |                                                         |
| Maximale Studierendenzahl: 48                                                                                                                                                                        |                                    |                                                         |

| Georg-August-Universität Göttingen                     | 3 C (Anteil SK: 3 |
|--------------------------------------------------------|-------------------|
| Modul SK.Bio.335: Geschichte und Theorien der Biologie | 2 SWS             |

# Lernziele/Kompetenzen: Die Studenten/-innen lernen, dass die Begriffe und Theorien der Biowissenschaften das Ergebnis einer langen, wechselvollen Geschichte sind. Sie erkennen die Komplexität und Nichtlinearität geschichtlicher Erkenntniswege und die enge Wechselbeziehung von Wissenschaft und Gesellschaft. Die Kenntnis wissenschaftlicher und persönlicher Verhältnisse der Vergangenheit fördert eine kritische Reflexion des Studienalltags. Arbeitsaufwand: Präsenzzeit: 30 Stunden Selbststudium: 60 Stunden

| Lehrveranstaltung: Einführung in die Wissenschaftsgeschichte (Vorlesung)          | 2 SWS |
|-----------------------------------------------------------------------------------|-------|
| Prüfung: Klausur (60 Minuten)                                                     |       |
| Prüfungsanforderungen:                                                            |       |
| Entstehung und Wandel fundamentaler biologischer Theorien und Begriffe wie Zelle  |       |
| (Elementarorganismen), Stoffwechsel (Fermente/Enzyme, Vitamine), Vererbung        |       |
| (Sexualität, Gene), Entwicklung (Epigenese, Analogien/Homologien), Korrelation    |       |
| ("Nervenprinzip", Hormone), Evolution (Konkurrenz vs. Kooperation, Symbiogenese), |       |
| Biodiversität (Klassifizierung) und Umwelt (Ökosysteme). Verständnis des Wesens   |       |
| wissenschaftlicher Disziplinen unter besonderer Beachtung der Biologie. Spezielle |       |
| Kenntnisse zur Geschichte der Biologie in Göttingen.                              |       |

| Zugangsvoraussetzungen: keine            | Empfohlene Vorkenntnisse:<br>keine                                              |
|------------------------------------------|---------------------------------------------------------------------------------|
| Sprache:<br>Deutsch                      | Modulverantwortliche[r]: Prof. Dr. Dieter Heineke Prof. Dr. Ekkehard Höxtermann |
| Angebotshäufigkeit: Jedes Sommersemester | Dauer: 1 Semester                                                               |
| Wiederholbarkeit:<br>zweimalig           | Empfohlenes Fachsemester:<br>2 - 6                                              |
| Maximale Studierendenzahl:               |                                                                                 |

# Georg-August-Universität Göttingen Modul SK.Bio.340: Einführung in das wissenschaftliche Arbeiten für Biologen

#### Lernziele/Kompetenzen:

Die Studierenden sollen fachspezifische, grafische, rhetorische und organisatorische Methoden erlernen für die Präsentation von biologischen Forschungsergebnissen in Form von Vortrag und Poster. Zudem sollen sie grundlegende Methoden erlernen zur Prüfungsvorbereitung, Literaturarbeit, Erstellung der Bachelorarbeit und Protokollen. Dafür sollen die Studierenden stilistische und sprachspezifische (Deutsch und Englisch) Kenntnisse in Gruppen- und Einzelarbeit erarbeiten und anwenden. Die Studierenden werden in der E-Learning-Einheit ihr Wissen regelmäßig testen können und mit eigenen Beiträgen das E-Lernmodul erweitern.

#### Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden

#### Lehrveranstaltungen:

1. Einführung in das wissenschaftliche Arbeiten für Biologen (Seminar)

2. Einführung in das wissenschaftliche Arbeiten für Biologen (E-Learning-Einheit)

2 SWS

2 SWS

#### Prüfung: wissenschaftliches Poster und Vortrag (10 Minuten)

Prüfungsvorleistungen:

stetige Teilnahme an der E-Learning-Einheit und regelmäßige Teilnahme am Seminar **Prüfungsanforderungen:** 

Die Studierenden sollen anhand der im Seminar erlernten wissenschaftlichen sowie grafischen Methoden ein Themenposter erstellen, welches internationalen Konventionen entspricht. Dieses sollen sie thematisch während des Seminars und im E-Learning in Form von Gruppen- und Einzelarbeit zu einem vorgegebenen biologischen Thema erarbeiten. Das Thema soll zudem von den Studenten in einem Vortrag als Power-Point-Präsentation vorgestellt werden.

| Zugangsvoraussetzungen:<br>keine | Empfohlene Vorkenntnisse: SK.FS.E-FN-C1-1 B.Bio.190-1 Vorlesung "Regeln guter wissenschaftlicher Praxis" |
|----------------------------------|----------------------------------------------------------------------------------------------------------|
| Sprache: Deutsch, Englisch       | Modulverantwortliche[r]: M.Sc. Biol. Johanna Spaak                                                       |
| Angebotshäufigkeit: einmalig     | Dauer: 1 Semester                                                                                        |
| Wiederholbarkeit:<br>zweimalig   | Empfohlenes Fachsemester:<br>4 - 6                                                                       |
| Maximale Studierendenzahl: 20    |                                                                                                          |

# Georg-August-Universität Göttingen Modul SK.FS.E-FN-C1-1: Scientific English I - C1.1 - Fachsprache Englisch für Naturwissenschaftler I English title: Scientific English I

#### Lernziele/Kompetenzen:

Weiterentwicklung bereits vorhandener diskursiver Fertigkeiten und Kompetenzen auf einem über die Stufe B2 des Gemeinsamen europäischen Referenzrahmens hinausgehenden Niveau, mit Hilfe derer auch jede Art von beruflicher und naturwissenschaftlicher Sprachhandlung auf Englisch vollzogen werden kann, wie z.B.:

- Fähigkeit, mühelos an allen Unterhaltungen, Diskussionen und Verhandlungen mit allgemeinen und naturwissenschaftlichen Inhalten teilzunehmen und dabei die Gesprächspartner problemlos zu verstehen sowie auf ihre Beiträge differenziert einzugehen bzw. eigene Beiträge inhaltlich komplex und sprachlich angemessen zu formulieren;
- Fähigkeit, auch umfangreichere naturwissenschaftliche Publikationen zu allen Themen zu verstehen und unter Anwendung spezifischer Sprachstrukturen und -konventionen sprachlich und stilistisch sicher selbst zu verfassen;
- Erwerb spezifischer sprachlicher und stilistischer Strukturen der englischen Sprache sowie Entwicklung eines differenzierten naturwissenschaftlichen Wortschatzes;
- Ausbau des operativen landeskundlichen und interkulturellen Wissens über die englischsprachigen Länder im beruflichen und naturwissenschaftlichen Kontext.

#### Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Scientific English I (Übung)

4 SWS

Prüfung: (1)Portfilo: Präsentation (ca. 10 Min.; mündl. Ausdr.; 25%) und schriftl.

Arbeitsauftrag (ca. 5 S.; schriftl. Ausdruck; 25%)+(2) schriftl. Prüfung:insg. 90 Min.

(Hör- u. Leseverstehen je 25 %)

#### Prüfungsanforderungen:

Nachweis von sprachlichen Handlungskompetenzen in interkulturellen und naturwissenschaftlichen Kontexten unter Anwendung der vier Fertigkeiten Hören, Sprechen, Lesen und Schreiben, d.h. Nachweis der Fähigkeit, rezeptiv wie produktiv auf eine über das Niveau B2 des Gemeinsamen europäischen Referenzrahmens hinausgehende Art mit für Naturwissenschaftler typischen mündlichen und schriftlichen Kommunikationssituationen umzugehen.

| Zugangsvoraussetzungen:                           | Empfohlene Vorkenntnisse: |
|---------------------------------------------------|---------------------------|
| SK.FS.E-B2-2 (Modul Mittelstufe II) oder          | keine                     |
| Einstufungstest mit abgeschlossenem Niveau B2 des |                           |
| GER                                               |                           |
| Sprache:                                          | Modulverantwortliche[r]:  |
| Englisch                                          | Darrin Miral              |
| Angebotshäufigkeit:                               | Dauer:                    |
| Jedes Semester                                    | 1 Semester                |
| Wiederholbarkeit:                                 | Empfohlenes Fachsemester: |

| zweimalig                        |  |
|----------------------------------|--|
| Maximale Studierendenzahl:<br>25 |  |

#### Georg-August-Universität Göttingen

### Modul SK.FS.E-FN-C1-2: Scientific English II - C1.2 - Fachsprache Englisch für Naturwissenschaftler II

English title: Scientific English II

6 C (Anteil SK: 6 C)

4 SWS

#### Lernziele/Kompetenzen:

Weiterentwicklung vorhandener diskursiver Fertigkeiten und Kompetenzen bis zum Niveau C1 des Gemeinsamen europäischen Referenzrahmens, mit Hilfe derer auch sehr komplexe berufliche und naturwissenschaftliche Sprachhandlungen auf Englisch vollzogen werden können, wie z.B.:

- Weiterentwicklung der Fähigkeit, mühelos an allen Unterhaltungen, Diskussionen und Verhandlungen mit allgemeinen und naturwissenschaftlichen Inhalten teilzunehmen, solche mündlichen Kommunikationssituationen zu leiten bzw. aktiv mitzugestalten sowie eigene Beiträge inhaltlich komplex und sprachlich angemessen zu formulieren;
- Weiterentwicklung der Fähigkeit, auch umfangreichere naturwissenschaftliche Publikationen zu allen Themen zu verstehen und unter Anwendung spezifischer Sprachstrukturen und -konventionen sprachlich und stilistisch sicher auf einem hohen Niveau selbst zu verfassen:
- Ergänzender Erwerb spezifischer sprachlicher und stilistischer Strukturen der englischen Sprache sowie Weiterentwicklung eines differenzierten naturwissenschaftlichen Wortschatzes;
- Ausbau des operativen landeskundlichen und interkulturellen Wissens über die englischsprachigen Länder im beruflichen und naturwissenschaftlichen Kontext.

#### Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Scientific English II (Übung)

Prüfung: (1)Portfilo: Präsentation(en) (insg. ca. 15 Min.; mündl. Ausdr.; 25%) und schriftl. Arbeitsaufträge (insg. ca. 10 S.; schriftl. Ausdr.; 25%)+(2)schriftl. Prüfung: insg.90 Min. (Hör- u. Leseverstehen je 25 %)

4 SWS

#### Prüfungsanforderungen:

Nachweis von sprachlichen Handlungskompetenzen in interkulturellen und naturwissenschaftlichen Kontexten unter Anwendung der vier Fertigkeiten Hören, Sprechen, Lesen und Schreiben, d.h. Nachweis der Fähigkeit, rezeptiv wie produktiv auf eine dem Niveau C1 des Gemeinsamen europäischen Referenzrahmens angemessene Art mit für Naturwissenschaftler typischen mündlichen und schriftlichen Kommunikationssituationen umzugehen.

| Zugangsvoraussetzungen: | Empfohlene Vorkenntnisse: |
|-------------------------|---------------------------|
| SK.FS.E-FN-C1-1         | keine                     |
| Scientific English I    |                           |
| Sprache:                | Modulverantwortliche[r]:  |
| Englisch                | Darrin Miral              |
| Angebotshäufigkeit:     | Dauer:                    |
| Jedes Semester          | 1 Semester                |
| Wiederholbarkeit:       | Empfohlenes Fachsemester: |

| zweimalig                        |  |
|----------------------------------|--|
| Maximale Studierendenzahl:<br>25 |  |

#### 6 C Georg-August-Universität Göttingen 1 SWS Modul SQ.SoWi.9: Tätigkeit in der studentischen bzw. akademischen Selbstverwaltung English title: Work in the student or academic Self-administration Lernziele/Kompetenzen: Arbeitsaufwand: Die Studierenden erwerben in diesem Modul zentrale Kompetenzen der Planung, Präsenzzeit: Organisation, Präsentation und Grundkenntnisse in der Projektplanung. Sie erwerben 10,5 Stunden Kompetenzen in Rhetorik, in der Selbstpräsentation und der freien Rede. Selbststudium: 169,5 Stunden Im Praxisteil erlangen die Studierenden vertiefte Kenntnisse in den Bereichen Moderationstechniken, Entscheidungs- und Konliktlösungsverhalten in Gruppen. Im begleitenden Seminar erlangen die Studierenden Kenntnisse über die Gremienund Organisationsstrukturen der Hochschule sowie Methoden und Techniken der Selbstreflexion. Praxisanteil entweder: Referent/in im Fachschaftsrat der Sozialwissenschaftlichen Fakultät - Referent/in im AStA der Universität Gleichstellungsbeauftragte der Sozialwissenschaftlichen Fakultät Lehrveranstaltungen: 1. Begleitendes Seminar 1 SWS 2. Praxisteil: Tätigkeit in der Selbstverwaltung Prüfung: Tätigkeitsbericht (max. 2 Seiten), unbenotet Prüfungsanforderungen: Die Studierenden erbringen den Nachweis, dass sie in der Lage sind Erfahrungen aus der Praxis mit theoretischem Wissen zu verknüpfen und Methoden der Reflektion anzuwenden. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine Die Tätigkeit im jeweiligen Organ muss jeweils mindestens ein halbes Jahr betragen, in der Regel ein Jahr. Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Steffen-Matthias Kühnel Angebotshäufigkeit: Dauer: Jedes Semester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl: 30

Bemerkungen:

Schlüsselkompetenzen der Sozialwissenschaftlichen Fakultät. Anmeldung unter sowi@gwdg.de.